
asignaturas del Máster
Curso 2025/2026 Código Asignatura: 28805139
-
Guía de la Asignatura Curso 2025/2026
- Primeros Pasos
- Presentación y contextualización
- Requisitos y/o recomendaciones para cursar esta asignatura
- Equipo docente
- Horario de atención al estudiante
- Competencias que adquiere el estudiante
- Resultados de aprendizaje
- Contenidos
- Metodología
- Sistema de evaluación
- Bibliografía básica
- Bibliografía complementaria
- Prácticas de laboratorio
- Recursos de apoyo y webgrafía
Código Asignatura: 28805139
PRESENTACIÓN Y CONTEXTUALIZACIÓN
La guía de la asignatura ha sido actualizada con los cambios que aquí se mencionan.
NOMBRE DE LA ASIGNATURA | WIRELESS COMMUNICATIONS |
CÓDIGO | 28805139 |
CURSO ACADÉMICO | 2025/2026 |
TÍTULOS DE MASTER EN QUE SE IMPARTE |
MÁSTER UNIVERSITARIO EN SISTEMAS ELECTRÓNICOS DE INFORMACIÓN Y COMUNICACIÓN/ INFORMATION AND COMMUNICATION ELECTRONIC SYSTEMS
|
TIPO | CONTENIDOS |
Nº ECTS | 5 |
HORAS | 125 |
PERIODO | SEMESTRE 2 |
IDIOMAS EN QUE SE IMPARTE | INGLÉS |
Rapid advances in the areas of sensor design, information technology and wireless networks have paved the way for the proliferation of wireless sensor networks, able to interface the physical world with the virtual world on an unprecedented scale and enabling a large number of new applications. Any professional career related with the deployment and applications of Industry 4.0 and IoT (Internet of Things) will need the knowledge and competences associated to this subject that besides will help to start succesfully a Doctoral Thesis.
This course provides the fundamental concepts and principles of wireless sensor networks and a survey of protocols, algorithms and technologies at different layers of a sensor system.
This subject belongs to the Master in Information and Communication Electronic Systems. This 5 ECTS core subject takes place in the second semester of the master (general module) aiming to provide with a specific and thorough scientific training. The subject's contents are based on knowledge previous to master and primarily on the next subjects of the first semester: "Introduction to Information and Telecommunication Systems", "Industrial and Real-time Communications" and "Internet Technologies for Information and Telecommunication Systems".
______________
Los rápidos avances en las áreas de diseño de sensores, tecnologías de la información y redes inalámbricas han allanado el camino para la proliferación de redes de sensores inalámbricos, capaces de interconectar el mundo físico con el mundo virtual en una escala sin precedentes, permitiendo un gran número de nuevas aplicaciones. Cualquier perfil profesional relacionado con despliegue y aplicaciones de la Industria 4.0 y de la IoT (Internet of Things) necesitará de los conocimientos y competencias asociadas a esta asignatura que, además, ayudarán a iniciar con éxito la realización de una Tesis Doctoral,
Esta asignatura proporciona los conceptos fundamentales de las redes de sensores inalámbricos así como protocolos, algoritmos y tecnologías que se encuetran en dichos sensores.
Esta asignatura pertenece al Máster Universitario en Sistemas Electrónicos de Información y Comunicación. Se trata de una asignatura troncal de 5 ECTS que tiene lugar en el segundo semestre (módulo general) con el objetivo de proporcionar una formación científica específica y exhaustiva. Los contenidos de la asignatura se basan en los conocimientos previos al Máster y muy especialmente en lo aprendido en las siguientes asignaturas del primer semestre: "Introducción a los Sistemas de Información y Telecomunicaciones", "Comunicaciones Industriales y en Tiempo Real" y "Tecnologías de Internet para los Sistemas de Información y Telecomunicaciones"
Prerequisites for this subject are outlined below:
-
Digital signal processing basics.
-
Hardware and software components of embedded systems.
-
Operating systems' basics.
-
Types of computer networks and routing strategies.
-
Basic programming skills.
-
Oral and written English.
______________
Los conocimientos previos necesarios para cursar esta asignatura se describen a continuación:
-
Conceptos básicos de procesado de señal digital.
-
Elementos hardware y software de sistemas embebidos.
-
Conceptos básicos de sistemas operativos.
-
Tipos de redes informáticas y estrategias de enrutamiento.
-
Conocimientos básicos de programación.
-
Inglés oral y escrito.
Nombre y apellidos | SANTIAGO MONTESO FERNANDEZ (Coordinador de Asignatura) |
Correo electrónico | smonteso@ieec.uned.es |
Teléfono | 91398-6481 |
Facultad | ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES |
Departamento | INGENIERÍA ELÉCTRICA, ELECTRÓNICA, CONTROL, TELEMÁTICA Y QUÍMICA APLICADA A LA INGENIERÍA |
Nombre y apellidos | FRANCISCO MUR PEREZ |
Correo electrónico | fmur@ieec.uned.es |
Teléfono | 91398-7780 |
Facultad | ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES |
Departamento | INGENIERÍA ELÉCTRICA, ELECTRÓNICA, CONTROL, TELEMÁTICA Y QUÍMICA APLICADA A LA INGENIERÍA |
La comunicación entre el equipo docente y los alumnos se hará a través de la plataforma virtual aLF o por e-mail con los profesores. El día de contacto por teléfono serán los martes por la mañana de 10:00 a 14:00 horas en los teléfonos 913986481 o 913987780.
Santiago Monteso (coordinador de la asignatura): smonteso@ieec.uned.es
Francisco Mur: fmur@ieec.uned.es
C/ Juan del Rosal, 12
28040 Madrid
English:
Communication between teaching staff and students will be through aLF virtual platform or by e-mail with teachers. The day to contact the staff by phone will be Tuesday morning from 10:00 to 14:00 hours and the phone numbers will be 913986481 or 913987780.
Santiago Monteso (course coordinator): smonteso@ieec.uned.es
Francisco Mur: fmur@ieec.uned.es
C/ Juan del Rosal, 12
28040 Madrid
Ver sección Resultados de Aprendizaje
-------------------
See section Learning Outcomes
Conocimientos o contenidos:
- C6: Adquirir un conocimiento sólido sobre los fundamentos de los sensores inalámbricos y su aplicación en los sistemas de comunicación predominantes en redes de sensores inalámbricas, así como comprender su operativa y uso en diversos entornos.
Competencias:
- CP1: Conocer y utilizar las diversas características de las redes inalámbricas de sensores, así como la gestión y aplicación de diferentes soluciones de comunicaciones y encaminamiento.
- CP2: Comprender los elementos implicados y los procesos que tienen lugar en las distintas tecnologías que integran los actuales sistemas de comunicación.
- CP6: Explorar y comprender la interacción y aplicación de los procesos y dispositivos que facilitan las comunicaciones inalámbricas.
Habilidades o destrezas:
- H6: Comprender, diseñar y aplicar soluciones de bajo consumo para redes de sensores inalámbricos en distintos entornos.
-------------------
Knowledge or Content:
- C6: Acquire a solid understanding of the fundamentals of wireless sensors and their application in the predominant communication systems in wireless sensor networks, as well as understand their operation and use in various environments.
Competencies:
- CP1: Understand and utilize the various characteristics of wireless sensor networks, as well as the management and application of different communications and routing solutions.
- CP2: Understand the elements involved and the processes that occur in the different technologies that comprise current communication systems.
- CP6: Explore and understand the interaction and application of the processes and devices that facilitate wireless communications.
Skills or abilities:
- H6: Understand, design and apply low-power solutions for wireless sensor networks in various environments.
Lesson 1: Motivation for wireless sensors networks (WSN)
Sensors link the physical with the digital world by capturing and revealing real-world phenomena
and converting these into a form that can be processed, stored, and acted upon. Integrated
into numerous devices, machines, and environments, sensors provide a tremendous
societal benefit. They can help to avoid catastrophic infrastructure failures, conserve precious
natural resources, increase productivity, enhance security, and enable new applications
such as context-aware systems and smart home technologies. The phenomenal advances
in technologies such as very large scale integration (VLSI), microelectromechanical systems
(MEMS), and wireless communications further contribute to the widespread use of
distributed sensor systems. This lesson covers an initial approach to the subject
Lesson 2: Applications of WSNs
Wireless sensor networks have inspired many applications. Some of them are futuristic
while a large number of them are practically useful. The diversity of applications in the
latter category is remarkable – environment monitoring, target tracking, pipeline (water,
oil, gas) monitoring, structural health monitoring, precision agriculture, health care, supply
chain management, active volcano monitoring, transportation, human activity monitoring,
and underground mining, to name a few. In this lesson some of these applications and the
prototype implementations for these applications will be discussed in some detail.
Lesson 3: Node architecture
The wireless sensor nodes are the central element in a wireless sensor network (WSN).
It is through a node that sensing, processing, and communication take place. It stores and
executes the communication protocols and the data-processing algorithms. The quality, size,
and frequency of the sensed data that can be extracted from the network are influenced by
the physical resources available to the node. Therefore, the design and implementation, the target of this lesson, of a wireless sensor node is a critical step.
Lesson 4: Operating systems
One key point of this course is the operating system (OS) in a WSN. It is usually a thin software layer that logically resides between the node’s hardware and the application and provides basic programming abstractions to application developers. Its main task is to enable applications to interact with hardware
resources, to schedule and prioritize tasks, and to arbitrate between contending applications
and services that try to seize resources.
Lesson 5: Physical layer
One of the desirable aspects of wireless sensor nodes is their ability to communicate over a
wireless link. Because of it, mobile applications can be supported; flexible deployment of
nodes is possible; and the nodes can be placed in areas that are otherwise inaccessible to
wired nodes. Once the deployment is carried out, it is possible to rearrange node placement
in order to attain optimal coverage and connectivity; and the rearrangement can be made
without disrupting the normal operation of the structure or process the nodes monitor.
However, wireless communication poses some formidable challenges. Some of these
challenges are limited bandwidth, limited transmission range, and poor packet delivery performance
because of interference, attenuation, and multipath scattering. In order to tackle
these challenges, it is vital to understand their properties and some of the mitigation strategies
that are already in place. This lesson provides a fundamental introduction to point-to-point wireless digital communication.
Lesson 6: Medium access control
In most networks, multiple nodes share a communication medium for transmitting their data
packets. The medium access control (MAC) protocol (often referred to as a sublayer of the
data link layer of the OSI reference model) is primarily responsible for regulating access to
the common medium. Most sensor networks and sensing applications rely on radio transmissions
in the unlicensed ISM (Industrial, Scientific, and Medical) band, which may result in
communications significantly affected by noise and interferences. The choice of MAC protocol
has a direct bearing on the reliability and efficiency of network transmissions due to
these errors and interferences in wireless communications and to other challenges such as the
hidden-terminal and exposed-terminal problems. This lesson reviews the responsibilities
of the MAC layer in general, discusses the characteristics of MAC protocols for WSNs,
describes the main classes of MAC protocols for wireless communication, and provides
descriptions of a selection of MAC protocols for WSNs
Lesson 7: Network layer
Most WSN applications require large numbers of sensor nodes that cover large areas, necessitating an indirect (multi-hop) communication approach. That is, sensor nodes must not only generate and disseminate their own information, but also serve as relays or forwarding nodes for other sensor nodes. The process of establishing paths from a source to a sink (e.g., a gateway device) across one or more relays is called routing and is a key responsibility of the network layer of the communication protocol stack. When the nodes of a WSN are deployed in a deterministic manner (i.e., they are placed at certain predetermined locations), communication between them and the gateway can occur using predetermined routes. However, when the nodes are deployed in a randomized fashion the resulting topologies are nonuniform and unpredictable.
This lesson introduces the main categories of routing protocols and data dissemination strategies and discusses state-of-the-art solutions for each category.
Lesson 8: Power Management
The power consumption of a wireless sensor network (WSN) is of crucial concern because of the scarcity of energy. The problem in WSN is amplified for a number of reasons. The problem of power consumption can be approached from two angles. One is to develop energy-efficient communication protocols (self-organization, medium access, and routing protocols) that take the peculiarities of WSNs into account. The other is to identify activities in the networks that are both wasteful and unnecessary and mitigate their impact.
A dynamic power management (DPM) strategy ensures that power is consumed economically.
The strategy can have a local or global scope, or both. A local DPM strategy aims to minimize the power consumption of individual nodes by providing each subsystem with the amount of power that is sufficient to carry out a task at hand. The main focus of this lesson is on local dynamic power management strategies in WSNs.
Lesson 9: Other essential aspects for wireless sensor networks
Time (or clock) synchronization is required to ensure that sensing times can be compared in a meaningful way. While time synchronization techniques for wired networks have received a significant amount of attention, these techniques are unsuitable for wireless sensors because of the unique challenges posed by wireless sensing environments.
Localization is the task of determining the physical coordinates of a sensor node (or a group of sensor nodes) or the spatial relationships among objects. It comprises a set of techniques and mechanisms that allow a sensor to estimate its own location based on information gathered from the sensor’s environment.
It is also very relevant to provide an overview of the security concerns of WSNs that illustrates possible solutions to providing security and privacy protection. Note that the terms attacker, intruder, and adversary are used interchangeably to describe an entity (person or device) that performs an attack on a network or system.
The subject's learning methodology is based on the UNED standard with systems to support student independent work. Following training activities must be developed:
-
Carefully reading subject's guide.
-
Learning the basic bibliography, which is enough to pass the test; complementing it with the additional bibliography when needed.
-
Regularly checking course forums for teaching staff communications as well as other students' questions/comments. Answering other student's questions when possible.
-
Reading and understanding documentation available for download on the subject virtual course
-
Completing basic bibliography auto-assessment questions and exercises.
-
Taking part in debates on related issues organized in forums
-
Completing the final work, a brief essay on a related with WSNs topic
______________
La metodología con la que se ha diseñado el curso, y que se seguirá durante su desarrollo, es la específica de la educación a distancia del modelo de la UNED. El alumno debe desarrollar las siguientes actividades:
-
Leer atentamente la guía de la asignatura.
-
Estudiar la bibliografía básica, suficiente para aprobar la asignatura; complementándola con la bibliografía adicional cuando sea necesario.
-
Revisar periódicamente los foros del curso virtual, donde encontrará preguntas y comentarios de otros estudiantes. Responder a las preguntas de otros estudiantes cuando sea posible.
-
Leer y comprender la documentación disponible para su descarga en el curso virtual de la asignatura.
-
Realizar los ejercicios de autoevaluación existentes en la bibliografía básica.
-
Participar en debates en los foros sobre asuntos relacionados con la materia
-
Realizar el trabajo final, un ensayo breve sobre un tema relacionado con WSNs
TIPO DE PRUEBA PRESENCIAL |
|
---|---|
Tipo de examen | |
Tipo de examen | Examen de desarrollo |
Preguntas desarrollo | |
Preguntas desarrollo | 4 |
Duración | |
Duración | 120 (minutos) |
Material permitido en el examen | |
Material permitido en el examen | Calculadora no programable |
Criterios de evaluación | |
Criterios de evaluación | The exam is composed by:
It is not necessary to answer every question. Final exam constitutes 70% of the final grade. A minimum of five points out of ten is required to be evaluated. ----------
El examen esta compuesto por::
No es necesario contestar a todas las preguntas. El examen presencial constituye un 70% de la nota final. Un mínimo de cinco puntos sobre diez son requeridos para aprobar la asignatura en su conjunto. |
% del examen sobre la nota final | |
% del examen sobre la nota final | |
Nota mínima del examen para aprobar sin PEC | |
Nota mínima del examen para aprobar sin PEC | |
Nota máxima que aporta el examen a la calificación final sin PEC | |
Nota máxima que aporta el examen a la calificación final sin PEC | |
Nota mínima en el examen para sumar la PEC | |
Nota mínima en el examen para sumar la PEC | |
Comentarios y observaciones | |
Comentarios y observaciones | Questions will be similar to those of the self-assesment exercises in the basic bibliography. There are no PECs, but a Final Work that is is mandatory and must be passed to pass the subject. Dates for the exam for ordinary and extraordinary calls must be consulted on the Uned website. ---------------------------------------------------------------------------------------------
Las preguntas serán similares a las de los ejercicios de autoevaluación de la bibliografía básica No hay PECs, hay un Trabajo Final de la asignatura, que es obligatorio aprobar para aprobar la asignatura Las fechas de examen para las convocatorias ordinarias y extraordinarias deben ser consultadas en la página web de la Uned.
|
CARACTERÍSTICAS DE LA PRUEBA PRESENCIAL Y/O LOS TRABAJOS | |
---|---|
CARACTERÍSTICAS DE LA PRUEBA PRESENCIAL Y/O LOS TRABAJOS |
|
Requiere Presencialidad | |
Requiere Presencialidad | No |
Descripción | |
Descripción | Final work will be a short essay, with the usual research format for a report, on a topic proposed by the teachers or by the student. ----------------------------------------------------------------------------------
El Trabajo Final será un ensayo corto, en el formato típico de investigación, sobre un tema propuesto por los profesores o por el propio estudiante. |
Criterios de evaluación | |
Criterios de evaluación | Final work is mandatory and it must have a minimum of 20 pages and a maximum of 40 pages The criteria to evaluate the work will be a good structure of the document, a good distinction among cited works and own ideas, orginality, a correct scheme for references, a clear description of the objectives, a clear analysis of the results and a good self-criticism of the work. ----------------------------------------------------------------------------------
El trabajo Final es obligatorio con un mínimo de 20 páginas y un máximo de 40. Los criterios que se usarán para evaluar este trabajo serán una buena estructura del documento, una distinción clara entre los trabajos citados y las ideas propias, la originalidad, una descripción clara de los objetivo, una análisis claro de los resultados y una auto crítica correcta del trabajo. |
Ponderación de la prueba presencial y/o los trabajos en la nota final | |
Ponderación de la prueba presencial y/o los trabajos en la nota final | Final work is mandatory and provides 30% of the final grade. The grade got for this final work will only be taken into account if the grade in the presential exam is 5 or more. ----------------------------------------------------------------------------------- El trabajo final es obligatorio y constituye un 30% de la nota final. Para que se tenga en cuenta la nota de este trabajo final será necesario obtener al menos una nota de 5 en la prueba presencial. |
Fecha aproximada de entrega | |
Fecha aproximada de entrega | Convocatoria ordinaria: 20/06/2026 y extraordinaria: 10/09/2026 |
Comentarios y observaciones | |
Comentarios y observaciones | Students will send their final work through a dedicated channel in the virtual course. Teachers will return the evaluated individual works through the same channel -------------------------------------------------------------------------------------------------------
Lo alumnos enviarán su trabajo final a través de un canal dedicado en el curso virtual, que será el mismo que usarán los profesores para devolver el trabajo ya evaluado. |
PRUEBAS DE EVALUACIÓN CONTINUA (PEC) | |
---|---|
PRUEBAS DE EVALUACIÓN CONTINUA (PEC) |
|
¿Hay PEC? | |
¿Hay PEC? | No |
Descripción | |
Descripción | |
Criterios de evaluación | |
Criterios de evaluación | |
Ponderación de la PEC en la nota final | |
Ponderación de la PEC en la nota final | |
Fecha aproximada de entrega | |
Fecha aproximada de entrega | |
Comentarios y observaciones | |
Comentarios y observaciones |
OTRAS ACTIVIDADES EVALUABLES |
|
---|---|
¿Hay otra/s actividad/es evaluable/s? | |
¿Hay otra/s actividad/es evaluable/s? | No |
Descripción | |
Descripción | |
Criterios de evaluación | |
Criterios de evaluación | |
Ponderación en la nota final | |
Ponderación en la nota final | |
Fecha aproximada de entrega | |
Fecha aproximada de entrega | |
Comentarios y observaciones | |
Comentarios y observaciones |
¿Cómo se obtiene la nota final? |
|
---|---|
The evaluation will comprise:
Students are encouraged to carry out the self-assessment exercises proposed in the basic bibliography. ______________
La calificación final del curso se calculará como sigue:
Se anima a los estudiantes a llevar a cabo los ejercicios de autoevaluación propuestos en la bibliografía básica. - Si se aprueba el trabajo final pero no el examen, la nota del trabajo final se guarda para la siguiente convocatoria - Si se aprueba el examen pero no el trabajo final, la nota del examen se guarda para la siguiente convocatoria. |
ISBN(13): 9780521845274
Título: FUNDAMENTALS OF WIRELESS COMMUNICATION 2005 Autor/es: Pramod Viswanath;David Tse; Editorial: CAMBRIDGE UNIVERSITY PRESS.. |
ISBN(13): 9780716718239
Título: ELECTROMAGNETIC FIELDS AND WAVES : 3rd ed. Autor/es: Lorrain, Franðcois;Corson, Dale R.; Editorial: W. H. FREEMAN AND CO. |
ISBN(13): 9780966017632
Título: THE SCIENTIST AND ENGINEER'S GUIDE TO DIGITAL SIGNAL PROCESSING 1997 Autor/es: Steven W. Smith; Editorial: California Technical Publishing |
Different papers and guides on current studies and projects in WSNs will be available in the virtual course for deeping into some aspects of theoretical and practical uses of WSNs
Con el objetivo de permitir profundizar en diferentes aspectos teóricos y prácticos de las WSNs se dispondrá de diferentes guías y artículos en el curso virtual
¿Hay prácticas en esta asignatura de cualquier tipo (en el Centro Asociado de la Uned, en la Sede Central, Remotas, Online,..)? |
No |
CARACTERÍSTICAS GENERALES |
Presencial: |
Obligatoria: |
Es necesario aprobar el examen para realizarlas: |
Fechas aproximadas de realización: |
Se guarda la nota en cursos posteriores si no se aprueba el examen: |
Cómo se determina la nota de las prácticas: |
REALIZACIÓN |
Lugar de realización (Centro Asociado/ Sede central/ Remotas/ Online): |
N.º de sesiones: |
Actividades a realizar: |
OTRAS INDICACIONES: |
UNED's aLF e-learning platform provides with the adequate student-teacher interface. aLF enables document management and sharing, comunity topic creation and participation and online project development. It also provides with the necessary tools for both teaching staff and students to combine individual work and cooperative learning.
______________
La plataforma aLF de e-Learning de la UNED proporciona la interfaz adecuada de interacción entre el alumno y los profesores. aLF permite gestionar y compartir documentos, crear y participar en comunidades temáticas así como realizar proyectos online. Se ofrecerán las herramientas necesarias para que, tanto el equipo docente como los estudiantes, encuentren la manera de compaginar tanto el trabajo individual como el aprendizaje cooperativo.