NO EXISTEN CAMBIOS
La guía de la asignatura ha sido actualizada con los cambios que aquí se mencionan.
Los modelos probabilísticos constituyen un marco dentro de la Inteligencia Artificial para representar y resolver problemas de decisión complejos bajo incertidumbre. Este marco se encuentra en la intersección de diferentes disciplinas como la informática y la estadística, apoyándose en conceptos de algoritmos para grafos, teoría de probabilidades y aprendizaje automático, entre otros. Constituyen la base para una amplia variedad de aplicaciones, como el diagnóstico médico, la comprensión de imágenes, la robótica y el procesamiento del lenguaje natural. Esta asignatura contribuye al perfil profesional del estudiante proporcionándole herramientas fundamentales para resolver y estudiar problemas del mundo real bajo incertidumbre, al tiempo que le forma para utilizar una herramienta software que le permita utilizar los métodos aprendidos de una forma práctica y eficaz en su práctica laboral.
El objetivo de esta asignatura es que el alumno/a conozca los modelos gráficos probabilistas, principalmente las redes bayesianas y los diagramas de influencia, tanto los fundamentos teóricos como los algoritmos para el cálculo de probabilidades y la forma de construir modelos que resuelvan problemas del mundo real.
La asignatura Métodos Probabilistas se imparte tanto en el Máster Universitario en Investigación en Inteligencia Artificial (antes llamado "en Inteligencia Artificial Avanzada: Fundamentos, Métodos y Aplicaciones") como en el Máster Universitario en Tecnologías del Lenguaje (antes llamado "en Lenguajes y Sistemas Informáticos") de la ETSI Informática de la UNED, en ambos como optativa. Esta asignatura es de carácter anual con una carga de 6 ECTS.
Complementa a otras asignaturas del Máster en Investigación en IA que estudian los métodos lógicos, simbólicos, neuronales, evolutivos y los de aprendizaje. Estos son los métodos básicos que se utilizan en las distintas ramas de la IA, tales como la visión artificial, robótica, lenguaje natural, minería de datos, etc.
Naturalmente, estos métodos no son compartimentos estancos, sino que interactúan entre sí. Por ejemplo, algunos problemas de inferencia en modelos probabilistas pueden resolverse mediante algoritmos evolutivos, muchos de los métodos de aprendizaje simbólico utilizan técnicas probabilistas, existen formalismos que combinan la lógica y la probabilidad, etc.
Esta asignatura no requiere conocimientos previos específicos, pues el material básico preparado por el equipo docente explica los conceptos fundamentales necesarios, por ejemplo sobre grafos y sobre probabilidad. El único requisito es tener mentalidad matemática para seguir la exposición de los contenidos: definiciones, teoremas, demostraciones...
Aunque el material básico de la asignatura está en castellano, para las actividades complementarias es necesario leer con fluidez en inglés.
Para consultas de interés general (por ejemplo, sobre los contenidos de la asignatura, sobre cómo interpretar los enunciados de los ejercicios, etc.) envíe un mensaje al foro de la asignatura. No debe preguntar en el foro cómo resolver los ejercicios de evaluación.
Para consultas particulares (por ejemplo, una duda sobre la resolución de los ejercicios o sobre las calificaciones), puede preguntar en privado al coordinador de la asignatura:
Prof. Francisco Javier Diez Vegas
Guardias: lunes y miércoles 16:00-18:00.
Asistencia al estudiante: lunes y miércoles 10:30-13:30.
ETSI Informática. c/ Juan del Rosal, 16. Despacho 3.09.
Teléfono: 913987161
Correo electrónico: fjdiez@dia.uned.es.
.
COMPETENCIAS
C1 Comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
C2 Abstracción, análisis, síntesis y relación de ideas.
C3 Capacidad crítica y de decisión.
C4 Capacidad de estudio y autoaprendizaje
C5 Capacidad creativa y de investigación.
C6 Habilidades sociales para el trabajo en equipo
C7 Capacidad de estudio de los sistemas y aproximaciones existentes y para distinguir las aproximaciones más efectivas.
C8 Capacidad para detectar carencias en el estado actual de la ciencia y la tecnología.
C9 Capacidad para proponer nuevas aproximaciones que de solución a las carencias detectadas.
CONOCIMIENTOS O CONTENIDOS
CO1 Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
CO2 Capacidad de comprender y manejar de forma básica los aspectos más importantes relacionados con los lenguajes y sistemas informáticos en general, y, de manera especial, en los siguientes ámbitos: Tecnologías del lenguaje y de acceso a la información en web.
HABILIDADES O DESTREZAS
H1 Capacidad de aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios relacionados con su área de estudio.
H2 Capacidad de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
H3 Poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
H4 Capacidad de especificar, diseñar, implementar y evaluar tanto cualitativa como cuantitativamente los modelos y sistemas propuestos.
H5 Capacidad para proponer y llevar a cabo experimentos con la metodología adecuada como para poder extraer conclusiones y determinar nuevas líneas de actuación e investigación.
COMPETENCIAS
C1 Comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
C2 Abstracción, análisis, síntesis y relación de ideas.
C3 Capacidad crítica y de decisión.
C4 Capacidad de estudio y autoaprendizaje.
C5 Capacidad creativa y de investigación.
C6 Habilidades sociales para el trabajo en equipo.
C7 Capacidad de estudio de los sistemas y aproximaciones existentes y para distinguir las aproximaciones más efectivas.
C8 Capacidad para detectar carencias en el estado actual de la ciencia y la tecnología.
C9 Capacidad para proponer nuevas aproximaciones que de solución a las carencias detectadas.
Tema 1: Fundamentos de redes bayesianas
1.1. Repaso de teoría de la probabilidad
1.2. Método bayesiano ingenuo
1.3. Repaso de teoría de grafos
1.4. Definición de red bayesiana
1.5. Grafos de dependencias e independencias
1.6. Interpretación probabilista e interpretación causal de un grafo
Tema 2. Inferencia en redes bayesianas
2.1. Métodos exactos
2.2. Métodos estocásticos
Tema 3. Construcción de redes bayesianas
3.1. Construcción de redes causales con conocimiento experto
3.2. Aprendizaje automático a partir de bases de datos
Tema 4. Análisis de decisiones
4.1. Fundamentos de teoría de la decisión
4.2. Diagramas de influencia y árboles de decisión
4.3. Otros métodos de evaluación de diagramas de influencia
4.4. Construcción de diagramas de influencia
Tema 5. Aplicaciones
5.1. Aplicaciones en medicina
5.2. Aplicaciones en informática educativa e interfaces inteligentes
5.3. Aplicaciones en seguridad informática y vigilancia
5.4. Aplicaciones en ingeniería y visión artificial
5.5. Otras aplicaciones
La asignatura no tiene clases presenciales. Los contenidos teóricos se impartirán a distancia, de acuerdo con las normas y los medios telemáticos de la enseñanza en la UNED.
El alumno debe estudiar la bibliografía básica, ver los vídeos docentes y practicar el tutorial de OpenMarkov.
TIPO DE PRIMERA PRUEBA PRESENCIAL
|
Tipo de examen |
Tipo de examen |
No hay prueba presencial |
TIPO DE SEGUNDA PRUEBA PRESENCIAL
|
Tipo de examen |
Tipo de examen |
No hay prueba presencial |
CARACTERÍSTICAS DE LA PRUEBA PRESENCIAL Y/O LOS TRABAJOS |
CARACTERÍSTICAS DE LA PRUEBA PRESENCIAL Y/O LOS TRABAJOS
|
Requiere Presencialidad |
Requiere Presencialidad |
No |
Descripción |
Descripción |
En esta asignatura no hay ninguna prueba presencial.
|
Criterios de evaluación |
Criterios de evaluación |
|
Ponderación de la prueba presencial y/o los trabajos en la nota final |
Ponderación de la prueba presencial y/o los trabajos en la nota final |
0 |
Fecha aproximada de entrega |
Fecha aproximada de entrega |
|
Comentarios y observaciones |
Comentarios y observaciones |
|
PRUEBAS DE EVALUACIÓN CONTINUA (PEC) |
PRUEBAS DE EVALUACIÓN CONTINUA (PEC)
|
¿Hay PEC? |
¿Hay PEC? |
Si,PEC no presencial |
Descripción |
Descripción |
Hay una Prueba de Evaluación Continua (PEC) por cada tema de la asignatura.
|
Criterios de evaluación |
Criterios de evaluación |
Para aprobar la asignatura es necesario tener al menos un 3'5 en cada PEC y una nota media de 5 sobre 10.
|
Ponderación de la PEC en la nota final |
Ponderación de la PEC en la nota final |
100 |
Fecha aproximada de entrega |
Fecha aproximada de entrega |
|
Comentarios y observaciones |
Comentarios y observaciones |
|
OTRAS ACTIVIDADES EVALUABLES
|
¿Hay otra/s actividad/es evaluable/s? |
¿Hay otra/s actividad/es evaluable/s? |
No |
Descripción |
Descripción |
|
Criterios de evaluación |
Criterios de evaluación |
|
Ponderación en la nota final |
Ponderación en la nota final |
|
Fecha aproximada de entrega |
Fecha aproximada de entrega |
|
Comentarios y observaciones |
Comentarios y observaciones |
|
¿Cómo se obtiene la nota final?
|
La calificación final se obtiene mediante la media de las 5 PECs. En caso de que cada PEC tuviera una ponderación diferente, se indicaría en el enunciado.
|
Los documentos de la bibliografía básica contienen una selección de bibliografía comentada al final de cada tema.
Además, podrá encontrar documentos y enlaces adicionales en el área de documentos de la plataforma docente.
La plataforma docente ofrece material de estudio, foros y los enunciados de las Pruebas de Evaluación Continua (tareas). Los alumnos disponen además de una colección de vídeos docentes y un programa de ordenador, OpenMarkov, para la construcción y evaluación de modelos gráficos probabilistas. Este programa, desarrollado en la UNED, ha sido utilizado en más de 30 países de 4 continentes. OpenMarkov está escrito y compilado en Java, lo cual permite que pueda funcionar en diferentes plataformas y sistemas operativos (linux, Windows, etc.). En el sitio web de OpenMarkov puede encontrar un archivo ejecutable, el código fuente del programa, un tutorial, documentos técnicos, etc.