Universidad Nacional de Educación a Distancia

Acceso a la portada del web UNED
asignatura master 2024

asignatura master 2025

TÉCNICAS DE APRENDIZAJE PROFUNDO EN LA INDUSTRIA

Código Asignatura: 28070143

PRESENTACIÓN Y CONTEXTUALIZACIÓN

TÉCNICAS DE APRENDIZAJE PROFUNDO EN LA INDUSTRIA
28070143
2024/2025
TÍTULOS DE MASTER EN QUE SE IMPARTE MÁSTER UNIVERSITARIO EN INDUSTRIA CONECTADA
CONTENIDOS
5
125
SEMESTRE 2
CASTELLANO

PRESENTACIÓN

Las redes neuronales profundas, o Aprendizaje Profundo (Deep Learning), son una tecnología basada en el concepto clásico de redes neuronales. En Aprendizaje Profundo, además del concepto de perceptrón o neurona clásica, se usa un conjunto de capas intermedias de aprendizaje denominadas capas ocultas (Hidden Layers) que se usan para identificar características específicas de la función no lineal a implementar (por ejemplo, una clasificación múltiple). No es una tecnología novedosa, sino que la aparición de técnicas de computación avanzada (procesamiento distribuido, clústeres, GPUs, etc.) ha permitido implementar (crear modelos) de este tipo de redes neuronales con poco esfuerzo y con tiempos razonables de ejecución comparados con los de las implementaciones de sus antecesoras. Adicionalmente, se han conseguido factores de precisión muy cercanos al 100% en tareas tan específicas como el reconocimiento de imágenes o del lenguaje hablado.
Esta asignatura se centra en mostrar los fundamentos del Aprendizaje Profundo y las principales herramientas que se pueden utilizar para desarrollar modelos basados en redes neuronales que, posteriormente, habilitarán al estudiante para resolver problemas de aplicación de este tipo de tecnología.

CONTEXTUALIZACIÓN

"Técnicas de aprendizaje profundo en la industria" es una asignatura de 5 créditos ECTS, de carácter obligatorio e impartida en el segundo semestre del Máster Universitario en  Industria Conectada. Guarda relación con las siguientes asignaturas de este mismo Máster: "Fundamentos matemáticos para la analítica de datos" e "Inteligencia Artificial en la Ingeniería".