C/ Bravo Murillo, 38 3ª, 28015 Madrid, España
Teléfono de contacto

doctorado en ingenieria de sistemas y control

doctorado en ingenieria y sistemas de control

PROGRAMA DE DOCTORADO EN INGENIERÍA DE SISTEMAS Y CONTROL

Código de doctorado: 9612

PRESENTACIÓN

El control automático ha emergido como una disciplina interesante y satisfactoria en un período de tiempo de apenas unos 60 años. El desarrollo del campo ha sido muy dinámico y motivador. Ha sido la primera disciplina técnica que trasciende las fronteras de las ingenierías tradicionales (mecánica, civil, eléctrica, química y nuclear) que tiene una base firme en las matemáticas aplicadas y un abanico muy amplio de aplicaciones. Es innegable que resulta crucial en la generación y transmisión de energía, en el control de procesos, en la fabricación de bienes y equipos, en la comunicación, en el transporte e incluso para el entretenimiento y el ocio. Ha sido un elemento clave en el diseño de equipos experimentales y en la instrumentación utilizada en las ciencias básicas.

La reciente aparición de nuevos sistemas integrados de medida, comunicación y cálculo distribuido ha comenzado ya a crear un entorno en el cual se tiene acceso a cantidades enormes de datos con capacidad de procesamiento y comunicación que eran inimaginables hace apenas 20 años. Esto va a tener como consecuencia inmediata un efecto profundo sobre las aplicaciones científicas, comerciales y militares, especialmente cuando los sistemas de software comiencen a interaccionar con sistemas físicos de manera cada vez más integrada. De forma natural pues el control automático va a ser un elemento esencial en la construcción de tales sistemas interconectados, que deben proporcionar un funcionamiento con elevadas prestaciones, capacidades de reconfiguración y gran fiabilidad frente a la presencia de incertidumbres y perturbaciones.

Además de una proliferación, a costes cada vez más reducidos, de dispositivos integrados con capacidades de cálculo, comunicación y medida, una tendencia importante en el control automático es su desplazamiento a niveles jerárquicos superiores donde la toma de decisiones juega un papel crucial como por ejemplo en la integración de lazos de realimentación local en los sistemas de gestión de recursos y planificación del funcionamiento de las empresas entendido en un sentido global. Extender los beneficios que aporta la automática a estos sistemas no tradicionales ofrece enormes oportunidades en la mejora de su eficacia, productividad, seguridad y fiabilidad.

Cuando el sistema de control automático se hace una parte crítica del proceso puede hacerse también de misión crítica lo que significa que el sistema fallará si lo hace el sistema de control. Esto introduce, de manera cada vez más creciente, fuertes demandas sobre la fiabilidad del sistema de control. Resulta pues sorprendente el hecho de que apenas sea reconocido por la sociedad el valor crucial que esta tecnología tiene en sus actuales niveles de bienestar. Esta capacidad de operación silenciosa es lo que le ha valido la consideración de "tecnología oculta" En este sentido los sistemas de control automático se han convertido en el "talón de Aquiles" de muchos de nuestros sistemas. La destrucción o mal funcionamiento de un controlador puede producir consecuencias catastróficas en el funcionamiento del proceso al que se encuentra conectado. Ejemplos de esto se encuentran en los automóviles, aeroplanos, sistemas industriales y reproductores de CD que dejarían de funcionar si sus sistemas de control fallasen.

El control automático es una tecnología crítica y fundamental para el desarrollo de una sociedad cada vez más orientada hacia la información y el conocimiento como base para la toma de decisiones y en esta línea conviene resaltar los siguientes objetivos que la automática tiene planteados en un futuro inmediato.

  • Control en entornos de red, asíncronos y distribuidos. El control distribuido a través de múltiples unidades de cálculo (computadores), interconectados mediante mecanismos de comunicación basados en paquetes, requerirá nuevos formalismos para asegurar su estabilidad, comportamiento y robustez. Esto es especialmente verdad en aplicaciones donde no se puede ignorar las restricciones computacionales y de comunicaciones (retardos) para efectuar las operaciones de control.
  • Coordinación y autonomía de alto nivel. Con mayor frecuencia cada vez se está utilizando la realimentación en los sistemas de tomas de decisiones de las empresas, como por ejemplo en la logística y gestión de la cadena de suministros, la gestión y el control del espacio aéreo, etc.
  • Síntesis automática de algoritmos de control con verificación y validación integrada. Los sistemas de ingeniería del futuro van a requerir la capacidad de diseñar rápidamente, rediseñar e implementar software de control en sistemas de gran complejidad. Se necesita pues diseñar herramientas cada vez más potentes que automaticen completamente el propio proceso desde el desarrollo del modelo hasta la simulación del hardware en el bucle de control incluyendo la verificación y validación del software a nivel del sistema.
  • Construcción de sistemas muy fiables a partir de componentes menos fiables. Un requisito cada vez más fundamental será que los sistemas deben de continuar operativos, con un funcionamiento degradado si fuera necesario, a pesar de los fallos que se produzcan en sus componentes individuales. En el desarrollo de estos objetivos el elemento central es el papel clave que juega el control. Los avances producidos en las últimas décadas en el análisis y diseño de sistemas de control deben extenderse hacia niveles de mayor jerarquía de la toma de decisiones si de verdad quieren hacerse sobre bases más realistas y rigurosas.

 

Un cambio importante que se ha ido produciendo en la empresa y en la actividad económica en general es la mayor presencia de la automatización y del conocimiento en procesos y productos cada vez más complejos que se apoyan en el control automático, los computadores y las comunicaciones (C3). Desplazar la necesidad de transformar la producción, y en concreto la fabricación de bienes, basada en recursos (humanos, computacionales, maquinaria), hacia la producción basada en el conocimiento. Esa transformación nos debe conducir hacia una producción flexible (i.e., respuesta automática a los cambios del entorno), digital (i.e., que involucre software y tecnologías de las comunicaciones en el diseño y operación de los procesos), en red (i.e., que integre procesos dinámicos y cooperativos a través de redes de valor añadido) y basada en conocimiento (i.e., utilización del conocimiento para optimizar los procesos, su adquisición y transferencia).

Igualmente, desde el punto de vista de los productos y sistemas, la tendencia es la de mayor funcionalidad y precisión, basada en la integración de componentes informáticos, sensores y actuadores y la incrustación de electrónica y sistemas de comunicaciones en el propio proceso físico que se desea automatizar. Es importante resaltar la relevancia de los sistemas empotrados para la incorporación de inteligencia a los sistemas de control. El fenómeno de la automatización pues trasciende con mucho a lo puramente tecnológico y se configura cara al futuro como un catalizador de profundos cambios cualitativos que se están produciendo en nuestro entorno vital.

Una tendencia paralela será la generalización del uso del control automático en sistemas de muy gran escala, tales como la logística y las cadenas de suministro de las empresas. Estos sistemas incorporarán la toma de decisiones de sistemas muy grandes y heterogéneos donde se requieren nuevos protocolos para determinar la gestión de los recursos a la luz de las incertidumbres que su funcionamiento futuro plantea. Aunque los modelos que se dispongan serán esenciales para analizar y diseñar tales sistemas, estos modelos (y los subsiguientes mecanismos de control) deben ser escalables a sistemas muy grandes, con millones de elementos que son en sí mismos tan complicados como los sistemas que actualmente se controlan de forma rutinaria.

Las ideas de control automático se utilizan también en otros campos. Sus principios y fundamentos están también teniendo un profundo impacto en campos tan diversos como la economía, la biología, la psicología y la misma sociología.