
TOMAS PRIETO RUMEAU
CATEDRÁTICO DE UNIVERSIDAD
ESTADÍSTICA, INVESTIGACIÓN OPERATIVA Y CÁLCULO NUMÉRICO
FACULTAD DE CIENCIAS
(+34) 91398-7812
Academic Information
Degree in Mathematics (Universidad Complutense de Madrid, Spain), 1998.
Ph.D. in Mathematics (Universidad Complutense de Madrid, Spain), 2001.
Current Position
Professor at the Department of Statistics, Operations Research and Numerical Calculus, UNED, Madrid, Spain.
Postal address:
Calle Juan del Rosal 10.
28040 Madrid, Spain
Teaching
Asignaturas de Grado:
- 61023038 - CÁLCULO DE PROBABILIDADES II
- 61022033 - CÁLCULO DE PROBABILIDADES I
- 6102308- - RESOLUCIÓN NUMÉRICA DE ECUACIONES
- 61024055 - PROCESOS ESTOCÁSTICOS
- 61024167 - TRABAJO FIN DE GRADO (MATEMÁTICAS)
- 61022085 - ANÁLISIS NUMÉRICO MATRICIAL E INTERPOLACIÓN
Asignaturas de Master:

N.º of recognized sections of teacher evaluation
5Research
RESEARCH GROUPS
- MoMANTAI Modelado Matemático y Análisis Numérico: Teoría y Aplicaciones Interdisciplinares
RESEARCH PROJECTS
- PID2021-122442-NBI00 Investigador Principal (junto con D. Franco Leis, UNED), 2022-2026.
N.º of recognized sections of research activity
3Publications
-
PAPERS
[1] Prieto-Rumeau, T. (2003). Statistical inference for a finite optimal stopping problem with unknown transition probabilities. Test 12, No. 1, pp. 215-239.
[2] Lasserre, J.B., Prieto-Rumeau, T. (2004). SDP vs LP relaxations in some performance evaluation problems. Stoch. Models 20, No. 4, pp. 439-456.[3] Prieto-Rumeau, T. (2004). Estimation of an optimal solution of a linear programming problem with unknown objective function. Math. Program. 101, No. 3, pp. 463-478.
[4] Prieto-Rumeau, T., Hernández-Lerma, O. (2005). The Laurent series, sensitive discount and Blackwell optimality for continuous-time controlled Markov chains. Math. Methods Oper. Res. 61, No. 1, pp. 123-145.
[5] Prieto-Rumeau, T., Hernández-Lerma, O. (2005). Bias and overtaking equilibria for continuous-time zero-sum Markov games. Math. Methods Oper. Res. 61, No. 3, pp. 437-454.
[6] Prieto-Rumeau, T. (2005). Central limit theorem for the estimator of the value of an optimal stopping problem. Test 14, No. 1, pp. 215-237.[7] Prieto-Rumeau, T., Hernández-Lerma, O. (2006). Bias optimality for continuous-time controlled Markov chains. SIAM J. Control Optim. 45, No. 1, pp. 51-73.
[8] Lasserre, J.B., Prieto-Rumeau, T., Zervos, M. (2006). Pricing a class of exotic options via moments and SDP relaxations. Math. Finance 16, No. 3, pp. 469-494.[9] Prieto-Rumeau, T. (2006). Blackwell optimality in the class of Markov policies for continuous-time controlled Markov chains. Acta Appl. Math. 92, No. 1, pp. 77-96.
[10] Guo, X.P., Hernández-Lerma, O., Prieto-Rumeau, T. (2006). A survey of recent results on continuous-time Markov decision processes. Top 14, No. 2, pp. 177-261.[11] Prieto-Rumeau, T., Hernández-Lerma, O. (2008). Ergodic control of continuous-time Markov chains with pathwise constraints. SIAM J. Control Optim. 47, No. 4, pp. 1888-1908.
[12] Zhu, Q.X., Prieto-Rumeau, T. (2008). Bias and overtaking optimality for continuous-time jump Markov decision processes in Polish spaces. J. Appl. Probab. 45, No. 2, pp. 417-429.
[13] Prieto-Rumeau, T. (2008). Stochastic algorithms for the estimation of an optimal solution of a LP problem. Convergence and central limit theorem. Comm. Statist. Theory Methods 37, No. 20, pp. 3308-3318.
[14] Vélez Ibarrola, R., Prieto-Rumeau, T. (2008). A De Finetti-type theorem for nonexchangeable finite-valued random variables. J. Math. Anal. Appl. 347, No. 2, pp. 407-415.
[15] Prieto-Rumeau, T., Hernández-Lerma, O. (2009). Variance minimization and the overtaking optimality approach to continuous-time controlled Markov chains. Math. Methods Oper. Res. 70, No. 3, pp. 527-540.
[16] Vélez Ibarrola, R., Prieto-Rumeau, T. (2009). De Finetti's-type results for some families of non identically distributed random variables. Electron. J. Probab. 14, pp. 72-86.
[17] Vélez Ibarrola, R., Prieto-Rumeau, T. (2010). De Finetti-type theorems for random selection processes. Necessary and sufficient conditions. J. Math. Anal. Appl. 365, No. 1, pp. 198-209.
[18] Prieto-Rumeau, T., Lorenzo, J.M. (2010). Approximating ergodic average reward continuous-time controlled Markov chains. IEEE Trans. Automat. Control 55, No. 1, pp. 201-207.
[19] Prieto-Rumeau, T., Hernández-Lerma, O. (2010). The vanishing discount approach to constrained continuous time controlled Markov chains. Systems Control Lett. 59, No. 8, pp. 504-509.
[20] Vélez Ibarrola, R., Prieto-Rumeau, T. (2011). De Finetti-type theorems for nonexchangeable 0-1 random variables. Test 20, No. 2, pp. 293-310.
[21] Vélez Ibarrola, R., Prieto-Rumeau, T. (2011). Conditionally independent increments point processes. J. Appl. Probab. 48, No. 2, pp. 490-513.
[22] Dufour, F., Prieto-Rumeau, T. (2012). Approximation of Markov decision processes with general state space. J. Math. Anal. Appl. 388, No. 2, pp. 1254-1267.
[23] Prieto-Rumeau, T., Hernández-Lerma, O. (2012). Discounted continuous-time controlled Markov chains: convergence of control models. J. Appl. Probab. 49, No. 4.
[24] Dufour, F., Prieto-Rumeau, T. (2013). Finite linear programming approximations of constrained discounted Markov decision processes. SIAM J. Control Optim. 51, pp. 1298-1324.
[25] Dufour, F., Prieto-Rumeau, T. (2014). Stochastic approximations of constrained discounted Markov decision processes. J. Math. Anal. Appl. 413, pp. 856-879.
[26] Dufour, F., Prieto-Rumeau, T. (2015). Approximation of average cost Markov decision processes using empirical distributions and concentration inequalities. Stochastics 87, pp. 273-307.
[27] Vélez Ibarrola, R., Prieto-Rumeau, T. (2015). Random assignment processes: strong law of large numbers and De Finetti theorem. Test 24, pp. 136-165.
[28] Prieto-Rumeau, T., Lorenzo, J.M. (2015). Approximation of zero-sum continuous-time Markov games under the discounted payo criterion. Top 23, pp. 799-836.
[29] Lorenzo, J.M., Hernandez-Noriega, I., Prieto-Rumeau, T. (2015). Approximation of two-person zero-sum continuous-time Markov games with average payo criterion. Oper. Res. Lett. 43, pp. 110-116.
[30] Dufour, F., Prieto-Rumeau, T. (2016). Conditions for the solvability of the linear programming formulation for constrained discounted Markov decision processes. Appl. Math. Opt. 74, pp. 27-51.
[31] Prieto-Rumeau, T., Hernández-Lerma, O. (2016). Uniform ergodicity of continuous-time controlled Markov chains: a survey and new results. Ann. Oper. Res. 241, pp. 249-293.
[32] Anselmi, J., Dufour, F., Prieto-Rumeau, T. (2016). Computable approximations for continuous-time Markov decision processes on Borel spaces based on empirical measures. J. Math. Anal. Appl. 443, pp. 1312-1361.
[33] Jasso-Fuentes, H., Menaldi, J.L., Prieto-Rumeau, T., Robin, M. (2018). Discrete-time hybrid control in Borel spaces: average cost optimality criterion. J. Math. Anal. Appl. 462, pp. 1695-1713.
[34] Anselmi, J., Dufour, F., Prieto-Rumeau, T. (2018). Computable approximations for average Markov decision processes in continuous time. J. Appl. Probab. 55, pp. 571-592.
[35] Dufour, F., Prieto-Rumeau, T. (2019). Approximation of discounted minimax Markov control problems and zero-sum Markov games using Hausdorff and Wasserstein distances. Dyn. Games Appl. 9, pp. 68-102.
[36] Jasso-Fuentes, H., Menaldi, J.L., Prieto-Rumeau, T. (2020). Discrete time hybrid control in Borel spaces. Appl. Math. Opt. 81, pp. 409-441.
[37] Jasso-Fuentes, H., Menaldi, J.L., Prieto-Rumeau, T. (2020). Discrete-time control with non-constant discount factor. Math. Methods Oper. Res. 92, pp. 377-399.
[38] Dufour, F., Prieto-Rumeau, T. (2022). Maximizing the probability of visiting a set infinitely often for a countable state space Markov decision process. J. Math. Anal. Appl. 505, paper 125639, 21 pp.
[39] Dufour, F., Prieto-Rumeau, T. (2022). Stationary Markov Nash equilibria for nonzero-sum constrained ARAT Markov games. SIAM J. Control Optim. 60, pp. 945-967.
[40] Dufour, F., Prieto-Rumeau, T. (2024). Absorbing Markov decision processes. ESAIM - Control Optim. Calc. Var. 30, 5.
[41] Dufour, F., Prieto-Rumeau, T. (2024). Nash equilibria for total expected reward absorbing Markov games: the constrained and unconstrained cases. Appl. Math. Opt. 89, 34.
[42] Dufour, F., Prieto-Rumeau, T. (2024). Maximizing the probability of visiting a set infinitely often for a Markov decision process with Borel state and actions spaces. J. Appl. Probab. 61, In Press.
[43] Jasso-Fuentes, H., Menaldi, J.L., Prieto-Rumeau, T. (2024). Recent results on discrete-time hybrid control models with general state and action spaces. Pure Appl. Func. Anal. 9, pp. 675-704.
-
CONFERENCE PAPERS
[1] Prieto-Rumeau, T. (2003). Stochastic simplex algorithm for a linear programming problem with unknown objective function. Proceedings of the Conference EYSM'03, eds: Fournier, B., Fürrer, R., Gsponer, T., Restle, E.M., ISBN 3-908152-17-8, pp. 113-122.
[2] Prieto-Rumeau, T., Hernández-Lerma, O. (2010). Policy iteration and finite approximations to discounted continuous-time controlled Markov chains. Modern Trends in Controlled Stochastic Processes: Theory and Applications, ed.: Piunovskiy, A.B., ISBN 1-905-986-30-0, Luniver Press, pp. 84-101.[3] Dufour, F., Prieto-Rumeau, T. (2012). Approximation of infinite horizon discounted cost Markov decision processes. Optimization, Control, and Applications of Stochastic Systems. In Honor of Onésimo Hernández-Lerma, eds.: Hernández-Hernández, D., Minjárez-Sosa, J.A., ISBN 978-0-8176-8336-8, Birkhäuser, pp. 59-76.
[4] Dufour, F., Prieto-Rumeau, T. (2015). Solving the average cost optimality equation for unichain Markov decision processes: a linear programming approach. Modern Trends in Controlled Stochastic Processes: Theory and Applications, Volume II, ed.: Piunovskiy, A.B., ISBN 1-905-986-45-9, Luniver Press, pp. 32-46.
[5] Dufour, F., Prieto-Rumeau, T. (2019). Numerical approximations for discounted continuous time Markov decision processes. Modeling, Stochastic Control, Optimization, and Applications, eds.: Yin, G., Zhang, Q., ISBN 978-3-030-25497-1, Springer, pp. 147-171.
-
BOOKS
[1] Prieto-Rumeau, T., Hernández-Lerma, O. (2012). Selected Topics on Continuous-Time Controlled Markov Chains and Markov Games. Advanced Texts in Mathematics. Imperial College Press, London.
[2]
Vélez Ibarrola, R., Prieto-Rumeau, T. (2013). Procesos Estocásticos. Editorial UNED, in Spanish.