

ALEJANDRO ORTEGA GARCIA
SECR. DPTO. MATEMÁTICAS FUNDAMENTALES
PROFESOR PERMANENTE LABORAL
MATEMÁTICAS FUNDAMENTALES
FACULTAD DE CIENCIAS
(+34) 91398-6242
Academic Information
.
Academic positions held
.
Research activity
.
Professional experience
.
Teaching
Asignaturas de Grado:
- 61041071 - ANÁLISIS MATEMÁTICO II
- 61024167 - TRABAJO FIN DE GRADO (MATEMÁTICAS)
- 6104102- - ANÁLISIS MATEMÁTICO I

N.º of recognized sections of teacher evaluation
1Research
RESEARCH PROJECTS
- Ecuaciones en derivadas parciales y sistemas de EDP acopladas: Análisis y aplicaciones, Agencia Estatal de Investigación, Gobierno de España. Ref: PID2019-106122GB-I00. Investigador Principal: Eduardo Colorado Heras, Pablo Álvarez-Caudevilla
- EPUC3M23: Matemática Aplicada y Computacional en la UC3M, CAM. Consejería de Educación e Investigación. Investigador Principal: Rodolfo Cuerno Rejado
- Optimización y métodos variacionales: análisis, simulación y aplicaciones, Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Gobierno de España. Ref: MTM2017-83740-P. Investigador Principal: José Carlos Bellido Guerrero
- Ecuaciones en derivadas parciales no lineales y sistemas de EDP acopladas de segundo y alto orden, Ministerio de Economía y Competitividad y FEDER. Ref: MTM2016- 80618-P. Investigador Principal: Eduardo Colorado Heras
N.º of recognized sections of research activity
1Publications
- PUBLICATIONS IN MAGAZINES Ir a MathSciNet MR Author
-
PUBLICATIONS AT CONFERENCES
- Existence of solutions for a system with general Hardy-Sobolev singular criticalities,
Cal. Var. 64, 131 (2025). Á. Arroyo, R. López-Soriano, A. Ortega.
https://doi.org/10.1007/s00526-025-02990-y - Pervasiveness of the p-Laplace operator under localization of fractional g-Laplace operators,
J. Nonlinear Var. Anal. 9 (2025), 373-395. A. Ortega.
https://doi.org/10.23952/jnva.9.2025.3.04 - New functional inequalities with applications to the arctan-fast diffusion equation,
Mediterr. J. Math. (2025). R. Granero-Belinchón, M. Magliocca, A. Ortega. (To Appear) - Fractional Schrödinger systems coupled by Hardy-Sobolev critical terms,
Differ. Integral Equ. 38 (11/12), (November/December 2025). A. Ortega. (To Appear) - On the Robin function for the fractional Laplacian on symmetric domains,
Bull. Iran. Math. Soc. 50, 4 (2024). A. Ortega
https://doi.org/10.1007/s41980-023-00841-0 - Nonlinear elliptic systems involving Hardy-Sobolev Criticalities,
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 157 (2023). R. López-Soriano, A. Ortega.
https://doi.org/10.1007/s13398-023-01490-y - Subcritical nonlocal problems with mixed boundary conditions,
Bull. Math. Sci. (2023), 23 pp. G. Molica-Bisci, A. Ortega, L. Vilasi.
https://doi.org/10.1142/S166436072350011X - Bound and ground states of coupled NLS–KDV equations with Hardy potential and critical power,
J. Differ. Equ. 365 (2023), 560-590. E. Colorado, R. López-Soriano, A. Ortega.
https://doi.org/10.1016/j.jde.2023.04.033 - Concave-Convex critical problems for the spectral fractional Laplacian with mixed boundary conditions,
Fract. Calc. Appl. Anal. 26 (2023), no. 1, 305-335. A. Ortega.
https://doi.org/10.1007/s13540-022-00118-z - Nonlinear Fractional Schrödinger Equations coupled by power-type nonlinearities,
Adv. Differential Equations 28 (2023), no. 1-2, 113-142. E. Colorado, A. Ortega.
https://doi.org/10.57262/ade028-0102-113 - On the motion of gravity-capillary waves with odd viscosity,
J. Nonlinear Sci. 32, 28 (2022). R. Granero-Belinchón, A. Ortega.
https://doi.org/10.1007/s00332-022-09786-w - Existence of bound and ground states for an elliptic system with double criticality,
Nonlinear Anal. 216 (2022), Paper No. 112730. E. Colorado, R. López-Soriano, A.Ortega.
https://doi.org/10.1016/j.na.2021.112730 - A Strong Maximum Principle for the fractional Laplace equation with mixed boundary condition,
Fract. Calc. Appl. Anal. 24 (2021), no. 6, pp. 1699-1715. R. López-Soriano, A. Ortega.
https://doi.org/10.1515/fca-2021-0073 - Existence of positive solutions for a Brezis-Nirenberg type problem involving an inverse operator,
Electron. J. Differential Equations 2021, Paper No. 52, 24 pp. P. Álvarez- Caudevilla, E. Colorado, A. Ortega.
ejde.math.txstate.edu - Spectral stability for the peridynamic fractional p-Laplacian,
Appl. Math. Optim. 84 (2021), suppl. 1, S253-276. J. C. Bellido, A. Ortega.
https://doi.org/10.1007/s00245-021-09768-6 - A restricted nonlocal operator bridging together the Laplacian and the Fractional Laplacian,
Calc. Var. Partial Differential Equations 60, 71 (2021). J. C. Bellido, A. Ortega.
https://doi.org/10.1007/s00526-020-01896-1 - Regularity of solutions to a fractional elliptic problem with mixed Dirichlet–Neumann boundary data,
Adv. Calc. Var. 14 (2021), no. 4, 521-539. J. Carmona, E. Colorado, T. Leonori, A. Ortega.
https://doi.org/10.1515/acv-2019-0029 - Semilinear fractional elliptic problems with mixed Dirichlet–Neumann boundary conditions,
Fract. Calc. Appl. Anal. 23 (2020), no. 4, pp. 1208-1239. J. Carmona, E. Colorado, T. Leonori, A. Ortega.
https://doi.org/10.1515/fca-2020-0061 - Positive solutions for semilinear fractional elliptic problems involving an inverse fractional operator,
Nonlinear Anal. Real World Appl. 51 (2020), 102960 21 pp. P. Álvarez- Caudevilla, E. Colorado, A. Ortega.
https://doi.org/10.1016/j.nonrwa.2019.06.010 - Homotopy regularization for a high-order parabolic equation,
Mediterr. J. Math. 17 (2020), no. 1, Paper No. 2, 18 pp. P. Álvarez-Caudevilla, A. Ortega.
https://doi.org/10.1007/s00009-019-1424-9 - The Brezis-Nirenberg problem for the fractional Laplacian with mixed Dirichlet-Neumann boundary conditions,
J. Math. Anal. Appl. 473 (2019), no. 2, 1002-1025. E. Colorado, A. Ortega.
https://doi.org/10.1016/j.jmaa.2019.01.006 - Finite sampling in multiple generated U–invariant subspaces,
IEEE Trans. Inform. Theory 62 (2016), no. 4, 2203-2212. A. García, H. Fernandez-Morales, M.J. Muñoz-Bouzo, A. Ortega.
https://doi.org/10.1109/tit.2016.2531086 - A method for K-Means seeds generation applied to text mining,
Stat. Methods Appl. 25 (2016), no. 3, 477-499. A. Ortega, J. Sueiras, D. Vélez, J. Vélez.
https://doi.org/10.1007/s10260-015-0345-4 - On the effect of boundaries in two phase porous flow,
Nonlinearity 28 (2015), no. 2, 435-461.
R. Belinchón, G. Navarro, A. Ortega.
https://doi.org/10.1088/0951-7715/28/2/435
- Existence of solutions for a system with general Hardy-Sobolev singular criticalities,
-
Preprints
-
Positive solutions for a weighted critical problem with mixed boundary conditions, A. Ortega, L. Vilasi, Y. Wang. arxiv.org/abs/2412.11497 [math.AP]
-