 
  TOMAS PRIETO RUMEAU
CATEDRÁTICO DE UNIVERSIDAD
ESTADÍSTICA, INVESTIGACIÓN OPERATIVA Y CÁLCULO NUMÉRICO
FACULTAD DE CIENCIAS
(+34) 91398-7812
Formación
- Licenciado en Ciencias Matemáticas, Universidad Complutense de Madrid (1993-1998)
- Doctor en Ciencias Matemáticas, Universidad Complutense de Madrid (2001)
Puestos académicos
Universidad Complutense de Madrid
- 1998-2001, Profesor Ayudante (Departamento de Estadística e Investigación Operativa I)
- 2002-2004, Profesor Asociado (Departamento de Estadística e Investigación Operativa I)
Universidad Nacional de Educación a Distancia
- 2004-2005, Profesor Ayudante (Departamento de Economía Aplicada Cuantitativa II)
- 2005-2007, Profesor Ayudante Doctor (Departamento de Estadística, Investigación Operativa y Cálculo Numérico)
- 2007-2019, Profesor Titular de Universidad (Departamento de Estadística, Investigación Operativa y Cálculo Numérico)
- desde 2019, Catedrático de Universidad (Departamento de Estadística, Investigación Operativa y Cálculo Numérico)
Docencia
Asignaturas de Grado:
- 61023038 - CÁLCULO DE PROBABILIDADES II
- 61022033 - CÁLCULO DE PROBABILIDADES I
- 6102308- - RESOLUCIÓN NUMÉRICA DE ECUACIONES
- 61022085 - ANÁLISIS NUMÉRICO MATRICIAL E INTERPOLACIÓN
- 61024167 - TRABAJO FIN DE GRADO (MATEMÁTICAS)
- 61024055 - PROCESOS ESTOCÁSTICOS
Asignaturas de Máster:
Programas de Doctorado:
 
    N.º de tramos reconocidos de evaluación docente
5Investigación
GRUPO DE INVESTIGACIÓN UNED
- MoMANTAI Modelado Matemático y Análisis Numérico: Teoría y Aplicaciones Interdisciplinares
PROYECTO DE INVESTIGACIÓN ACTUAL
- PID2021-122442-NBI00 Investigador Principal (junto con D. Franco Leis, UNED), 2022-2026.
N.º de tramos reconocidos de actividad investigadora
4- 
    	Publicaciones en revistas del JCR
    	[1] Prieto-Rumeau, T. (2003). Statistical inference for a finite optimal stopping problem with unknown transition probabilities. Test 12, No. 1, pp. 215-239.
 
 [2] Lasserre, J.B., Prieto-Rumeau, T. (2004). SDP vs LP relaxations in some performance evaluation problems. Stoch. Models 20, No. 4, pp. 439-456.[3] Prieto-Rumeau, T. (2004). Estimation of an optimal solution of a linear programming problem with unknown objective function. Math. Program. 101, No. 3, pp. 463-478. 
 
 [4] Prieto-Rumeau, T., Hernández-Lerma, O. (2005). The Laurent series, sensitive discount and Blackwell optimality for continuous-time controlled Markov chains. Math. Methods Oper. Res. 61, No. 1, pp. 123-145.
 
 [5] Prieto-Rumeau, T., Hernández-Lerma, O. (2005). Bias and overtaking equilibria for continuous-time zero-sum Markov games. Math. Methods Oper. Res. 61, No. 3, pp. 437-454.
 
 [6] Prieto-Rumeau, T. (2005). Central limit theorem for the estimator of the value of an optimal stopping problem. Test 14, No. 1, pp. 215-237.[7] Prieto-Rumeau, T., Hernández-Lerma, O. (2006). Bias optimality for continuous-time controlled Markov chains. SIAM J. Control Optim. 45, No. 1, pp. 51-73. 
 
 [8] Lasserre, J.B., Prieto-Rumeau, T., Zervos, M. (2006). Pricing a class of exotic options via moments and SDP relaxations. Math. Finance 16, No. 3, pp. 469-494.[9] Prieto-Rumeau, T. (2006). Blackwell optimality in the class of Markov policies for continuous-time controlled Markov chains. Acta Appl. Math. 92, No. 1, pp. 77-96. 
 
 [10] Guo, X.P., Hernández-Lerma, O., Prieto-Rumeau, T. (2006). A survey of recent results on continuous-time Markov decision processes. Top 14, No. 2, pp. 177-261.[11] Prieto-Rumeau, T., Hernández-Lerma, O. (2008). Ergodic control of continuous-time Markov chains with pathwise constraints. SIAM J. Control Optim. 47, No. 4, pp. 1888-1908. [12] Zhu, Q.X., Prieto-Rumeau, T. (2008). Bias and overtaking optimality for continuous-time jump Markov decision processes in Polish spaces. J. Appl. Probab. 45, No. 2, pp. 417-429. [13] Prieto-Rumeau, T. (2008). Stochastic algorithms for the estimation of an optimal solution of a LP problem. Convergence and central limit theorem. Comm. Statist. Theory Methods 37, No. 20, pp. 3308-3318. [14] Vélez Ibarrola, R., Prieto-Rumeau, T. (2008). A De Finetti-type theorem for nonexchangeable finite-valued random variables. J. Math. Anal. Appl. 347, No. 2, pp. 407-415. [15] Prieto-Rumeau, T., Hernández-Lerma, O. (2009). Variance minimization and the overtaking optimality approach to continuous-time controlled Markov chains. Math. Methods Oper. Res. 70, No. 3, pp. 527-540. [16] Vélez Ibarrola, R., Prieto-Rumeau, T. (2009). De Finetti's-type results for some families of non identically distributed random variables. Electron. J. Probab. 14, pp. 72-86. [17] Vélez Ibarrola, R., Prieto-Rumeau, T. (2010). De Finetti-type theorems for random selection processes. Necessary and sufficient conditions. J. Math. Anal. Appl. 365, No. 1, pp. 198-209. [18] Prieto-Rumeau, T., Lorenzo, J.M. (2010). Approximating ergodic average reward continuous-time controlled Markov chains. IEEE Trans. Automat. Control 55, No. 1, pp. 201-207. [19] Prieto-Rumeau, T., Hernández-Lerma, O. (2010). The vanishing discount approach to constrained continuous time controlled Markov chains. Systems Control Lett. 59, No. 8, pp. 504-509. [20] Vélez Ibarrola, R., Prieto-Rumeau, T. (2011). De Finetti-type theorems for nonexchangeable 0-1 random variables. Test 20, No. 2, pp. 293-310. [21] Vélez Ibarrola, R., Prieto-Rumeau, T. (2011). Conditionally independent increments point processes. J. Appl. Probab. 48, No. 2, pp. 490-513. [22] Dufour, F., Prieto-Rumeau, T. (2012). Approximation of Markov decision processes with general state space. J. Math. Anal. Appl. 388, No. 2, pp. 1254-1267. [23] Prieto-Rumeau, T., Hernández-Lerma, O. (2012). Discounted continuous-time controlled Markov chains: convergence of control models. J. Appl. Probab. 49, No. 4. [24] Dufour, F., Prieto-Rumeau, T. (2013). Finite linear programming approximations of constrained discounted Markov decision processes. SIAM J. Control Optim. 51, pp. 1298-1324. [25] Dufour, F., Prieto-Rumeau, T. (2014). Stochastic approximations of constrained discounted Markov decision processes. J. Math. Anal. Appl. 413, pp. 856-879. [26] Dufour, F., Prieto-Rumeau, T. (2015). Approximation of average cost Markov decision processes using empirical distributions and concentration inequalities. Stochastics 87, pp. 273-307. [27] Vélez Ibarrola, R., Prieto-Rumeau, T. (2015). Random assignment processes: strong law of large numbers and De Finetti theorem. Test 24, pp. 136-165. [28] Prieto-Rumeau, T., Lorenzo, J.M. (2015). Approximation of zero-sum continuous-time Markov games under the discounted payo criterion. Top 23, pp. 799-836. [29] Lorenzo, J.M., Hernandez-Noriega, I., Prieto-Rumeau, T. (2015). Approximation of two-person zero-sum continuous-time Markov games with average payo criterion. Oper. Res. Lett. 43, pp. 110-116. [30] Dufour, F., Prieto-Rumeau, T. (2016). Conditions for the solvability of the linear programming formulation for constrained discounted Markov decision processes. Appl. Math. Opt. 74, pp. 27-51. [31] Prieto-Rumeau, T., Hernández-Lerma, O. (2016). Uniform ergodicity of continuous-time controlled Markov chains: a survey and new results. Ann. Oper. Res. 241, pp. 249-293. [32] Anselmi, J., Dufour, F., Prieto-Rumeau, T. (2016). Computable approximations for continuous-time Markov decision processes on Borel spaces based on empirical measures. J. Math. Anal. Appl. 443, pp. 1312-1361. [33] Jasso-Fuentes, H., Menaldi, J.L., Prieto-Rumeau, T., Robin, M. (2018). Discrete-time hybrid control in Borel spaces: average cost optimality criterion. J. Math. Anal. Appl. 462, pp. 1695-1713. [34] Anselmi, J., Dufour, F., Prieto-Rumeau, T. (2018). Computable approximations for average Markov decision processes in continuous time. J. Appl. Probab. 55, pp. 571-592. [35] Dufour, F., Prieto-Rumeau, T. (2019). Approximation of discounted minimax Markov control problems and zero-sum Markov games using Hausdorff and Wasserstein distances. Dyn. Games Appl. 9, pp. 68-102. [36] Jasso-Fuentes, H., Menaldi, J.L., Prieto-Rumeau, T. (2020). Discrete time hybrid control in Borel spaces. Appl. Math. Opt. 81, pp. 409-441. [37] Jasso-Fuentes, H., Menaldi, J.L., Prieto-Rumeau, T. (2020). Discrete-time control with non-constant discount factor. Math. Methods Oper. Res. 92, pp. 377-399. [38] Dufour, F., Prieto-Rumeau, T. (2022). Maximizing the probability of visiting a set infinitely often for a countable state space Markov decision process. J. Math. Anal. Appl. 505, paper 125639, 21 pp. [39] Dufour, F., Prieto-Rumeau, T. (2022). Stationary Markov Nash equilibria for nonzero-sum constrained ARAT Markov games. SIAM J. Control Optim. 60, pp. 945-967. [40] Dufour, F., Prieto-Rumeau, T. (2024). Absorbing Markov decision processes. ESAIM - Control Optim. Calc. Var. 30, 5. [41] Dufour, F., Prieto-Rumeau, T. (2024). Nash equilibria for total expected reward absorbing Markov games: the constrained and unconstrained cases. Appl. Math. Opt. 89, 34. [42] Dufour, F., Prieto-Rumeau, T. (2024). Maximizing the probability of visiting a set infinitely often for a Markov decision process with Borel state and actions spaces. J. Appl. Probab. 61, en prensa. [43] Jasso-Fuentes, H., Menaldi, J.L., Prieto-Rumeau, T. (2024). Recent results on discrete-time hybrid control models with general state and action spaces. Pure Appl. Func. Anal. 9, pp. 675-704. [44] Dufour, F., Prieto-Rumeau, T. (2025). Absorbing Markov decision processes and their occupation measures. SIAM J. Control Optim. 63, pp. 676-698. 
- 
    	Capítulos de libros 
    	[1] Prieto-Rumeau, T. (2003). Stochastic simplex algorithm for a linear programming problem with unknown objective function. Proceedings of the Conference EYSM'03, eds: Fournier, B., Fürrer, R., Gsponer, T., Restle, E.M., ISBN 3-908152-17-8, pp. 113-122.
 
 [2] Prieto-Rumeau, T., Hernández-Lerma, O. (2010). Policy iteration and finite approximations to discounted continuous-time controlled Markov chains. Modern Trends in Controlled Stochastic Processes: Theory and Applications, ed.: Piunovskiy, A.B., ISBN 1-905-986-30-0, Luniver Press, pp. 84-101.[3] Dufour, F., Prieto-Rumeau, T. (2012). Approximation of infinite horizon discounted cost Markov decision processes. Optimization, Control, and Applications of Stochastic Systems. In Honor of Onésimo Hernández-Lerma, eds.: Hernández-Hernández, D., Minjárez-Sosa, J.A., ISBN 978-0-8176-8336-8, Birkhäuser, pp. 59-76. [4] Dufour, F., Prieto-Rumeau, T. (2015). Solving the average cost optimality equation for unichain Markov decision processes: a linear programming approach. Modern Trends in Controlled Stochastic Processes: Theory and Applications, Volume II, ed.: Piunovskiy, A.B., ISBN 1-905-986-45-9, Luniver Press, pp. 32-46. [5] Dufour, F., Prieto-Rumeau, T. (2019). Numerical approximations for discounted continuous time Markov decision processes. Modeling, Stochastic Control, Optimization, and Applications, eds.: Yin, G., Zhang, Q., ISBN 978-3-030-25497-1, Springer, pp. 147-171. 
- 
    	Libros
    	[1]  Prieto-Rumeau, T., Hernández-Lerma, O. (2012). Selected Topics on Continuous-Time Controlled Markov Chains and Markov Games. Advanced Texts in Mathematics. Imperial College Press, London. Prieto-Rumeau, T., Hernández-Lerma, O. (2012). Selected Topics on Continuous-Time Controlled Markov Chains and Markov Games. Advanced Texts in Mathematics. Imperial College Press, London.[2]  Vélez Ibarrola, R., Prieto-Rumeau, T. (2013). Procesos Estocásticos. Editorial UNED. Vélez Ibarrola, R., Prieto-Rumeau, T. (2013). Procesos Estocásticos. Editorial UNED.
