Departamento de Matemática Aplicada

CONFERENCIA LUNES 4 DE JULIO DE 2022 A LAS **12:00**

An introduction to the big and little lip functions

Bruce Hanson St. Olaf College

Given a continuous function $f : \mathbb{R} \to \mathbb{R}$ with $M_f(x, r) = \sup_{|x-y| \le r} |f(x) - f(y)|$, the so-called "Big Lip" and "Little Lip" functions are defined as follows:

 $\operatorname{Lip} f(x) = \limsup_{r \to 0^+} \frac{M_f(x, r)}{r} \quad \operatorname{lip} f(x) = \liminf_{r \to 0^+} \frac{M_f(x, r)}{r}.$

The behavior of these functions is intimately related to the differentiability of f. The Rademacher-Stepanov Theorem tells us that f is differentiable almost everywhere on the set $L_f = \{x : \text{Lip } f(x) < \infty\}$. On the other hand, as Balogh and Csörnyei showed, this theorem no longer holds if we replace L_f with $l_f = \{x : \text{lip } f(x) < \infty\}$. They give an example where lip f(x) = 0 a.e. but $\text{Lip } f(x) = \infty$ for all $x \in \mathbb{R}$ so $L_f = \emptyset$ and f is nowhere differentiable. However, they also show that if $l_f = \mathbb{R}$, then f is differentiable on a set of positive measure and thus L_f has positive measure as well. In this talk, I explore the relationship between lip f and Lip f as well as between L_f and l_f . I will also pose a number of open problems.

Lugar: Aula Luis Rodríguez Marín del Departamento de Matemática Aplicada de la UNED (Aula 2.32). E.T.S.I. Industriales.