TITULACIÓN

MÁSTER UNIVERSITARIO EN INGENIERÍA DE SISTEMAS Y DE CONTROL

CÓDIGO 310401

14-15

MÁSTER UNIVERSITARIO EN INGENIERÍA DE SISTEMAS Y DE CONTROL CÓDIGO 310401

ÍNDICE

PRESENTACIÓN
OBJETIVOS Y COMPETENCIAS
SALIDAS PROFESIONALES, ACADÉMICAS Y DE INVESTIGACIÓN
REQUISITOS ACCESO
CRITERIOS DE ADMISIÓN
NO. DE ESTUDIANTES DE NUEVO INGRESO
PLAN DE ESTUDIOS
NORMATIVA
PRÁCTICAS
DOCUMENTACIÓN OFICIAL DEL TÍTULO
SISTEMA DE GARANTÍA INTERNA DE CALIDAD DEL TÍTULO
ATRIBUCIONES PROFESIONALES
PROFESORADO UCM
IGUALDAD DE GÉNERO

UNED 2 CURSO 2014/15

PRESENTACIÓN

La automática y el control automático juegan un papel básico en los progresos industriales y tecnológicos. Se encuentran en el desarrollo de los satélites de comunicaciones y de los viajes espaciales, en el diseño de vehículos de transporte (coches, trenes, aviones y barcos) más seguros y eficientes, en los sistemas de comunicación, incluyendo los sistemas de telefonía, los teléfonos celulares y también Internet, en el desarrollo de procesos químicos y de generación de energía más limpia y eficiente, en la automatización de la industria manufacturera, en el desarrollo de robots y de máquinas inteligentes, y en gran parte de los aparatos e instrumentación médicos y científicos más modernos.

Desde un punto de vista profesional el control es un campo interdisciplinar en el que los continuos avances tecnológicos obligan a formar a los estudiantes en aplicaciones multidisciplinares en las que deben dominar elementos de matemáticas y de computadoras a la vez que técnicas propias del control que les permita dar soluciones en campos muy diversos. La formación que se proporciona en el Máster sirve para campos como aplicaciones electrónicas, mecánicas, industriales, informáticas, producción de energía, redes de comunicaciones, automoción, manufactura y sistemas logísticos, mecatrónica, robótica y componentes, sistemas de transporte, procesos químicos, aplicaciones médicas y biológicas, sistemas medioambientales, aplicaciones a biosistemas y bioprocesos.

Para más información, consulte la página web del Máster:

https://cv4.ucm.es/moodle/course/view.php?id=4056

Si se desea conocer un poco mejor la importancia que la automática y el control automático tienen en nuestra sociedad se le invita a visualizar la presentación del profesor K.H. Aströn de la Universidad de Lund (Suecia) titulada: "Control: The Hidden Technology", o a leer el documento elaborado por el profesor R. Murray del Instituto Tecnológico de California (CalTech) titulado "Control in an Information Rich World".

Otros documentos que pueden servir como elemento motivador para decidirse por este Máster es el Libro Blanco del Control Automático y el Libro Blanco de la Robótica. Ambos textos son el resultado de actividades auspiciadas por la Asociación "Comité Español de la Automática" (CEA), sociedad científica nacional que agrupa a la inmensa mayoría de los investigadores españoles en el área del control automática y la robótica, aportando el enfoque desde las universidades, el CSIC y los centros tecnológicos. En el Libro Blanco del Control Automático se revisa el estado actual de la teoría y práctica del control automático en España, se analiza su relevancia en el contexto de la formación universitaria y de la implantación industrial y se estudian las posibles acciones que, en el entorno de cambio que supone el Espacio Europeo de Educación Superior, se deben tomar para situar este campo en un nivel equiparable al de nuestro entorno europeo. En el Libro Blanco de la Robótica se presenta una hoja de ruta, con horizonte temporal del año 2020, que permita identificar, de forma realista, los alcances de la robótica avanzada hacia la que se prevé evolucionará durante dicho horizonte temporal, los actores socio-económicos de esta transformación (actuales y futuros), las herramientas y los esfuerzos investigadores necesarios para conseguir estos objetivos, las posibles dificultades en su consecución y, en

UNED 3 CURSO 2014/15

definitiva, prepararnos para los futuros cambios.

Ya para finalizar, si se desea profundizar un poco más en qué puede proporcionarle la automática y el control automático desde el punto de vista teórico y formal se le invita a hojear el texto "Feedback Systems: An Introduction for Scientists and Engineers" elaborado por los profesores Murray y Aströn.

OBJETIVOS Y COMPETENCIAS

El objetivo fundamental de estos estudios de Máster es la formación de especialistas en las materias del control y la ingeniería de sistemas, que sean capaces de abordar el diseño, implementación, operación y mantenimiento de sistemas automáticos de supervisión, control, manipulación y gestión de procesos productivos en los que se requieran altas prestaciones de comportamiento dinámico, ahorro energético, reducción de contaminación o eficiencia y seguridad.

Además de las competencias genéricas relacionadas con: Gestión autónoma y autorregulada del trabajo, Gestión de los procesos de comunicación e información, Trabajo en equipo y de Compromiso ético, estos estudios llevarían a las siguientes competencias específicas:

Competencias específicas disciplinares (saber) CED

- ·CED1: Ingeniería de control.
- ·CED2: Sistemas de tiempo real.
- ·CED3: Redes y sistemas distribuidos.
- ·CED4: Sistemas robotizados y autónomos.
- ·CED5: Técnicas de programación y control de robots y de sistemas robotizados.
- ·CED6: Técnicas de visión artificial.
- ·CED7: Técnicas de modelado experimental de procesos.
- ·CED8: Técnicas de control digital en tiempo real.
- -CED9: Análisis y diseño de sistemas de control distribuidos.
- ·CED10: Revisión de instrumentación de control.
- ·CED11: Análisis de restricciones temporales de sistemas informáticos.
- ·CED12: Técnicas de desarrollo de núcleos de sistemas operativos de tiempo real.
- ·CED13: Técnicas de comunicaciones y sistemas en red.
- ·CED14: Métodos de implementación de sistemas de control.
- ·CED15: Métodos de diseño de sistemas de control no-convencionales (complejos, no lineales, distribuidos).
- ·CED16: Sistemas distribuidos, comunicaciones.
- ·CED17: Redes industriales.
- ·CED18: Búsquedas bibliográficas.
- ·CED19: Exposición y presentación de resultados de investigación.
- ·CED20: Métodos de optimización.
- ·CED21: Técnicas de programación matemática.
- ·CED22: Técnicas de optimización heurísticas.
- ·CED23: Técnicas de filtrado de señales multidimensionales.

UNED 4 CURSO 2014/15

- ·CED24: Técnicas de análisis de señales multiresolución.
- ·CED25: Actuadores hidráulicos, neumáticos y eléctricos.
- ·CED26: Sensores de fuerza, contacto, proximidad, detección de obstáculos y de posicionamiento.
- ·CED27: Redes de sensores.
- -CED28: Sistemas MENS y nano-sensores.
- ·CED29: Técnicas de identificación de sistemas.
- ·CED30: Técnicas de preprocesamiento de datos.
- ·CED31: Técnicas y herramientas de simulación de sistemas.
- ·CED32: Análisis y validación de sistemas mediante simulación.
- ·CED33: Analizar y representar el comportamiento de los organismos vivos.
- ·CED34: Patrones más comunes en las redes biológicas.
- ·CED35: Principios básicos de la evolución.
- ·CED36: Dinámica de sistemas.
- ·CED37: Arquitectura hardware de un sistema empotrado.
- ·CED38: Programación a bajo nivel de sistemas empotrados.
- ·CED39: Métodos y técnicas avanzadas para el diseño, desarrollo y programación de proyectos de sistemas empotrados.
- ·CED40: Técnicas de extracción de información a partir de datos.
- -CED41: Técnicas de reconocimiento de patrones.
- ·CED40: Técnicas de inferencia y aprendizaje a partir de datos.

Competencias específicas profesionales (saber hacer) CEP

- ·CEP1: Sintetizar nuevos algoritmos de control.
- ·CEP2: Analizar el comportamiento de sistemas de control en tiempo real.
- ·CEP3: Evaluar opciones en el diseño e implementación de sistemas robotizados.
- ·CEP4: Montar sistemas experimentales, fundamentalmente a nivel de laboratorio.
- ·CEP5: Diseñar sistemas robotizados e implementarlos, tanto a nivel de laboratorio como a nivel industrial.
- ·CEP6: Evaluar soluciones robotizadas a problemas de manutención.
- ·CEP7: Montar sistemas robotizados incluyendo sensores, accionadores, fusión de datos, comunicaciones. ...
- ·CEP8: Actualizar instalaciones automatizadas con nuevas soluciones.
- ·CEP9: Utilizar herramientas de CADCS.
- •CEP10: Abordar el tratamiento de procesos industriales (o aeronáuticos) de distinta tecnología (mecánicos, electrónicos, sociales, ...)
- ·CEP11: Montar sistemas de control sobre procesos reales, incluyendo sensores, accionadores, fusión de datos, comunicaciones, ...
- ·CEP12: Evaluar sistemas informáticos con restricciones temporales.
- ·CEP13: Diseñar y desarrollar aplicaciones para sistemas empotrados de control.
- ·CEP14: Abordar el tratamiento integrado del control de procesos con computador.
- ·CEP15: Integrar subsistemas mediante redes de comunicación.
- ·CEP16: Desarrollar software para sistemas de control.

UNED 5 CURSO 2014/15

- -CEP17: Integrar sistemas mediante redes o buses de campo.
- ·CEP18: Sintetizar algoritmos de optimización.
- ·CEP19: Analizar métodos de programación matemática y optimización heurística para la resolución de problemas de control e identificación.
- ·CEP20: Diseñar algoritmos de optimización heurística aplicados al control y la identificación de sistemas.
- ·CEP21: Analizar sistemas de tratamiento de señales.
- ·CEP22: Diseñar sistemas de procesamiento de señales.
- ·CEP23: Evaluar algoritmos de interpretación de señales.
- ·CEP24: Evaluar los actuadores y sensores existentes en sistemas robotizados y en instalaciones automatizadas.
- ·CEP25: Tratar la información sensorial. Fusión e integración multisensorial.
- ·CEP26: Analizar y evaluar modelos de distinta naturaleza.
- ·CEP27: Evaluar la validez de modelos obtenidos con distintas técnicas de identificación.
- ·CEP28: Análisis de resultados de simulación.
- ·CEP29: Toma de decisiones mediante simulación.
- ·CEP30: Evaluar sistemas informáticos con restricciones de control.
- ·CEP31: Conocer técnicas de co-diseño hardware/software de sistemas de control.
- ·CEP32: Sintetizar algoritmos de tratamiento de datos y señales.
- ·CEP33: Analizar sistemas de tratamiento de datos y señales.
- ·CEP34: Evaluar opciones de algoritmos de tratamiento de datos y señales.

SALIDAS PROFESIONALES, ACADÉMICAS Y DE INVESTIGACIÓN

Interés académico

La teoría del control es una rama interdisciplinaria de la ingeniería y de las matemáticas, que trata con sistemas dinámicos y que depende y comparte herramientas con la física (dinámica y modelado de sistemas), los computadores (información y software), la investigación operativa (optimización y teoría de juegos) y la inteligencia artificial, de las cuales se extraen herramientas y metodologías que permiten ir ampliando las posibilidades del control. Pero, a su vez, tiene la característica de una ingeniería ya que pretende diseñar y construir sistemas que tengan un comportamiento predecible, en un afán de conseguir de manera constante mejorar la calidad de vida de las personas.

La mayoría de las mejores universidades del mundo que imparten grados de ingeniería tienen grados de ingeniería de control o similares. En España hay más de 15 universidades que ofertan másteres con contenidos similares o próximos. No obstante, una cualidad claramente diferenciadora de éste es apoyarse de manera básica en una metodología de enseñanza a distancia, en la que los grupos que la imparten tienen una experiencia contrastada a nivel tanto nacional como internacional. La creación de laboratorios virtuales y remotos la viene desarrollando el Departamento de Informática y Automática de la UNED desde hace años y es uno de los grupos de liderazgo mundial en esta actividad. Esta actividad también se está desarrollando en el grupo de la UCM. Esto permite que el máster

UNED 6 CURSO 2014/15

contenga una oferta de prácticas igual o superior a los otros másteres, sin por ello hacer imprescindible la presencia real de los alumnos en el laboratorio.

Existe una demanda creciente de formación en nuestras universidades de estudiantes procedentes de Iberoamérica, propiciada entre otras por la identidad cultural y la facilidad del idioma. Aproximadamente un 7,5 por ciento de los alumnos del Programa de Doctorado que sirve de precedente al Máster que se solicita proceden de universidades iberoamericanas. Es de prever que esta demanda continúe en un futuro próximo dado el interés que se está suscitando a ambos lados del Atlántico por firmar convenios de colaboración y formación entre las universidades.

Interés científico

El control tiene numerosos retos a los que ir enfrentándose. Existe una demanda creciente de sistemas con un mayor grado de autonomía, capaces de mantener prestaciones aceptables en presencia de fallos y de perturbaciones imprevistas. Se está produciendo un gran impulso en campos en los que el control juega un papel fundamental: el desarrollo de vehículos autónomos terrestres, marinos, aéreos y espaciales; una industria de manufactura cada vez más automatizada; robots más inteligentes; redes de comunicaciones cada vez más eficientes y tolerantes a fallos; redes de generación y distribución de energía eléctrica más fiables; estructuras resistentes a los seísmos. La historia nos enseña que las mejoras tecnológicas en coste, capacidades o introducción de nuevos elementos en los aspectos básicos de todo sistema de control: medida, cálculo y actuación, propician nuevos desarrollos y amplifican el campo de aplicación del control a nuevos campos que hacen bien poco no resultaban atrayentes. Los desarrollos científicos y tecnológicos están permitiendo la manipulación de elementos inimaginables hasta ahora, lo que está propiciando el uso del control en numerosas aplicaciones en el campo de la física (control cuántico y control molecular, sistemas de nano escala, dispositivos micro-electro-mecánicos) y de la biología (control en agricultura, sistemas biológicos y médicos, modelado y control de sistemas medioambientales, biosistemas y bioprocesos).

Interés profesional

El control es un campo interdisciplinar en el que los continuos avances tecnológicos obligan a formar a los estudiantes en aplicaciones multidisciplinares en las que deben dominar elementos de matemáticas y de computadoras a la vez que técnicas propias del control que les permita dar soluciones en campos muy diversos. La formación que se proporciona en el máster sirve para campos como aplicaciones electrónicas, mecánicas, industriales, informáticas, producción de energía, redes de comunicaciones, automoción, manufactura y sistemas logísticos, mecatrónica, robótica y componentes, sistemas de transporte, procesos químicos, aplicaciones médicas y biológicas, sistemas medioambientales, aplicaciones a biosistemas y bioprocesos.

UNED 7 CURSO 2014/15

REQUISITOS ACCESO

Atendiendo al RD 1393/2007, modificado por el RD 861/2010, para acceder a este periodo de formación será necesario estar en posesión de un título universitario oficial español u otro expedido por una institución de educación superior del Espacio Europeo de Educación Superior que facultan en el país expedidor para el acceso a estas enseñanzas.

Asimismo, podrán acceder los titulados universitarios conforme a sistemas educativos ajenos al Espacio Europeo de Educación Superior sin necesidad de la homologación de sus títulos, previa comprobación por la Universidad de que aquellos acreditan un nivel de formación equivalente a los correspondientes títulos universitarios oficiales españoles y que faculten, en el país expedidor del título, para el acceso a enseñanzas de posgrado.

CRITERIOS DE ADMISIÓN

Criterios de admisión al periodo de formación

En términos generales, este título de Máster está dirigido a titulados universitarios en Ciencias, Ingenierías, Informática, y en carreras científico-tecnológicas relacionadas con la ingeniería de sistemas, la automática, la electrónica, las comunicaciones y la computación. Serán admitidos al periodo de formación los estudiantes que hayan cursado estudios previos en tales titulaciones.

También se podrán admitir alumnos matriculados en programas de doctorado sobre temas afines a la Automática y/o a la Informática de otras universidades.

En términos formativos, el estudiante que desee acceder a este programa de posgrado deberá justificar conocimientos generales que cubran, al menos de forma básica, una parte de las siguientes materias:

- •Fundamentos matemáticos y físicos.
- •Programación.
- •Sistemas informáticos.
- •Automatización y control.

Para los estudiantes de los que no se puedan verificar estos conocimientos se podrá considerar un tipo especial de adaptación, considerando cada caso de modo individualizado.

El órgano encargado de la admisión será la Comisión Coordinadora de Título de Máster (Interuniversitario); es el órgano responsable de la organización, supervisión y control de resultados. Estará compuesta por representantes de todas las universidades participantes, entre los que necesariamente estarán incluidos los/las Coordinadores/as del Máster. Asimismo se cuidará que en lo posible la composición sea paritaria.

La Comisión Coordinadora del Máster realizará la baremación de alumnos teniendo en cuenta la titulación acreditada por el solicitante, nivel, adecuación y créditos de los que constaba la titualción y su expediente académico.

Criterios de admisión al periodo de investigación

En cuanto al acceso al Doctorado en Ingeniería de Sistemas y de Control, el alumno deberá haber cursado un Máster en Ingeniería de Sistemas y de Control o equivalente en áreas afines.

UNED 8 CURSO 2014/15

Los estudiantes que cumplan con los requisitos de acceso serán admitidos al periodo de investigación conforme a la valoración realizada por la Comisión Coordinadora de los siguientes aspectos:

Carta de presentación firmada por un profesor asociado al programa de posgrado,

Currículum vitae completo con detalle de la experiencia investigadora y/o profesional,

Breve descripción de los intereses de investigación del solicitante,

Certificado de notas completo de grado y máster.

NO. DE ESTUDIANTES DE NUEVO INGRESO

El número máximo de alumnos es 100 (incluyendo alumnos de nueva admisión y alumnos de años anteriores que no hayan finalizado el máster).

PLAN DE ESTUDIOS

El Máster se ha dividido en ocho módulos mas un trabajo fin de máster. Todas las asignaturas de las materias del Máster son de carácter optativo. Los estudiantes harán la selección de las asignaturas que van a cursar de acuerdo a las recomendaciones de su tutor(a). Es muy importante la acción del tutor, ya que éste deberá aconsejar qué asignaturas de cada materia o módulo debe cursar de acuerdo al perfil que el estudiante quiera tener y de su formación previa. Esta acción de tutoría será supervisada de acuerdo a las recomendaciones de la Comisión Coordinadora. Este modo de proceder es habitual en los Másteres equivalentes de muchas de las universidades que se han analizado en 2.1.1, por ejemplo Harvard y Stanford, por elegir entre las de más prestigio. La razón principal que justifica la optatividad está en la amplitud de posibles aplicaciones y de formación previa de los alumnos, de modo que no se puede establecer a priori un camino base por el que todos los alumnos tienen que transitar.

Se deberán cursar 48 créditos de los ocho módulos de los que se compone el Máster, de los cuales 6 deben ser del módulo de prácticas, mas un trabajo fin de Máster que será de 12 créditos. Las prácticas se harán en laboratorios de investigación de los centros implicados en el programa, o con centros nacionales o extranjeros con los que se mantienen acuerdos de intercambio. En este sentido el Departamento de Informática y Automática de la UNED ha promovido y gestiona una red de laboratorios remotos, en la que participan instituciones nacionales e internacionales, y que permite a los alumnos del programa realizar prácticas, en una forma remota, en cualquiera de estas instituciones.

El trabajo fin de Máster tiene como objeto introducir al alumno en la metodología investigadora, y a la presentación de resultados de investigación, que todo alumno/a dedicado a la investigación debe adquirir.

En la Tabla 1 se da la distribución de materias y asignaturas de los módulos, y su ubicación temoral. Todas las asignaturas corresponden a 6 créditos ECTS.

Tabla 1: Módulos de asignaturas.

Ver la estructura de asignaturas y módulos del Máster en:

Tabla 2: Modulos del Máster

UNED 9 CURSO 2014/15

NORMATIVA

- •RD 1393/2007, de 29 de octubre, por el que se establece la ordenación de las enseñanzas universitarias oficiales
- •RD 861/2010, de 2 de julio, por el que se modifica el Real Decreto 1393/2007, de 29 de octubre, por el que se establece la ordenación de las enseñanzas universitarias oficiales
- •Actualización de los procedimientos de organización y gestión académica de los Másteres Universitarios oficiales y Doctorado de la UNED, para su adaptación en lo dispuesto en el RD. 1393/2007.
- Normas y criterios generales de reconocimiento y transferencia de créditos para los másteres.
- Normas de permanencia en estudios conducentes a títulos oficiales de la Universidad
 Nacional de Educación A Distancia.
- •Regulación de los trabajos de fin de master en las enseñanzas conducente al título oficial de master de la UNED.

Se recuerda que según las normas de permanencia de los Másteres Universitarios, aprobadas por acuerdo del Consejo de Gobierno de 24 de junio de 2008, los estudiantes de Máster con una carga lectiva de 60 créditos ECTS tendrán un plazo de permanencia de cuatro años, que han de entenderse consecutivos.

PRÁCTICAS

El Máster cuenta con asignaturas específicas de prácticas, además del trabajo fin de máster. Las prácticas que tiene que realizar el alumnado es función del perfil que quiera adquirir y de las materias que esté cursando. En este sentido, en las prácticas, además de las competencias indicadas, se intensificarán aquellas específicas relacionadas con las materias que esté cursando y en las que se basarán las prácticas.

En concreto, si se cursan las prácticas de instrumentación y control se intensificarán, especialmente, las competencias específicas de las materias de los módulos III "Sensores y procesamiento de señales", VI "Control" y, en menor medida, V "Modelado y simulación" y II "Computadores y comunicaciones".

Se aconseja que se consulte la página del máster para ver las instrucciones para las asignaturas de prácticas:

https://cv4.ucm.es/moodle/course/view.php?id=4056

UNED 10 CURSO 2014/15

DOCUMENTACIÓN OFICIAL DEL TÍTULO

La Ley Orgánica de Modificación de la Ley Orgánica de Universidades (LOMLOU) y los decretos que la desarrollan, establecen que todos los títulos oficiales de todas las universidades han de someterse a un proceso de verificación-acreditación por parte de la Agencia Nacional de Evaluación de la Calidad y Acreditación (ANECA) o los órganos competentes de las Comunidades Autónomas, según el caso, tanto en el momento de presentar la propuesta de desarrollo de cada título (solicitud de verificación), como una vez que ha sido completamente implantado (solicitud de renovación de la acreditación).

El proceso de verificación comienza con la elaboración de la memoria del título por la Universidad. El Consejo de Universidades (CU) recibe la memoria para su verificación y comprueba que la propuesta se ajusta a los protocolos establecidos, después la remite a la ANECA para su evaluación.

La Agencia elabora un informe final de evaluación que será favorable o desfavorable y lo remite al Consejo de Universidades. El Consejo de Universidades dicta la resolución de verificación que será positiva, si se cumplen las condiciones establecidas o negativa, en caso contrario. La resolución de verificación se comunicará al Ministerio de Educación y a la Universidad correspondiente.

El Ministerio elevará al Gobierno la propuesta de carácter oficial del título y su inclusión en el Registro de Universidades, Centros y Títulos (RUCT), cuya aprobación será publicada en el Boletín Oficial del Estado. Finalmente, la Universidad publicará el plan de estudios en el Boletín Oficial del Estado.

La ANECA cada dos años elabora un informe de seguimiento del título que proporciona una valoración externa sobre cómo se está realizando su implantación.

- Memoria del Título
- •Informe final de evaluación de la ANECA
- •Resolución de verificación del CU
- •Inscripción del Título en el Registro de Universidades, Centros y Títulos
- •Publicación del Plan de Estudios en el BOE
- •Informe de seguimiento del título
- •RUCT

UNED 11 CURSO 2014/15

SISTEMA DE GARANTÍA INTERNA DE CALIDAD DEL TÍTULO

La UNED considera imprescindible garantizar la calidad de todas las titulaciones oficiales que imparte y de los servicios que ofrece. Para ello, ha desplegado un Sistema de Garantía Interna de Calidad (SGIC), cuyo diseño ha sido certificado por la ANECA, que incluye el desarrollo de un conjunto de directrices mediante las cuales se asegura la calidad de sus enseñanzas, la mejora continua y una adecuada respuesta a la demanda de necesidades y expectativas de todos los grupos de interés.

El SGIC de la UNED contempla todos los procesos que desarrollan las facultades/escuelas y otros servicios universitarios, necesarios para asegurar el control y revisión de los objetivos de las titulaciones, los procesos de acceso y admisión de estudiantes, la planificación, seguimiento y evaluación de los resultados de la formación, la movilidad, orientación académica e inserción laboral, la adecuación del personal académico y de apoyo y los recursos materiales, entre otros.

Para la implantación del SGIC, la UNED ha creado:

- El *Portal estadístico*, que aporta información a toda la comunidad universitaria tanto de los resultados de la formación como de los resultados de la percepción obtenidos a través de los cuestionarios de satisfacción aplicados a los distintos grupos de interés.
- 2. Un repositorio denominado *Sistema de información para el seguimiento del título* (SIT), que recoge todas las evidencias del funcionamiento del SGIC.

La Oficina de tratamiento de la información y la **Oficina de Calidad** proporcionan anualmente toda esta información a los responsables del título, con el objetivo de que reflexionen y establezcan acciones de mejora.

- •Resultados de satisfacción y de la formación (Portal estadístico)
- •Documentación del Sistema de información para el seguimiento del título (SIT)
- •Sistema de Garantía Interna de Calidad de la UNED (SGIC)

Comisión coordinadora del título

José Sánchez Moreno (coordinador)

Jesús Manuel de la Cruz García (coordinador por la U.Complutense)

María Guinaldo Losada (secretaria)

Rafael Martínez Tomás (Director de la Escuela)

Carmen Rosa Redondo Menéndez (representatne del PAS)

Un representante de estudiantes matriculados en el título

UNED 12 CURSO 2014/15

ATRIBUCIONES PROFESIONALES

PROFESORADO UCM

A continuación, se enumeran los profesores participantes en el máster que pertenecen a la Universidad Complutense de Madrid.

- •Alberto Herrán González
- Eva Besada Portas (coordinadora UCM)
- •Gonzalo Pajares Martinsanz
- Javier Arroyo Gallardo
- •Jesús Manuel de la Cruz García
- •José Antonio López Orozco
- •José Jaime Ruz Ortiz
- José María Girón Sierra
- •María Guijarro Mata-García
- Matilde Santos Peñas
- •Rubén Fuentes Fernández
- •Segundo Esteban San Román

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del titular que los desempeñe.

UNED 13 CURSO 2014/15